• Title/Summary/Keyword: CGH(computer generated hologram)

Search Result 116, Processing Time 0.023 seconds

A New Architecture of High-Performance Digital Hologram Generator based on Independent Calculation of a Holographic Pixel (독립적 홀로그램 화소 연산 방식의 고성능 디지털 홀로그램 생성기의 하드웨어 구조)

  • Lee, Yoon-Huyk;Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.403-415
    • /
    • 2011
  • In this paper, we proposed a hardware architecture to generate digital holograms at high speed. It used the modified computer-generated hologram (CGH) algorithm and adapted the pipeline-based hardware to be able to remove memory bottleneck problem. It uses not the method which generates a hologram by accumulating intermittent holograms but the one which independently generates a pixel of a final hologram and uses the appropriate CGH algorithm for the selected method. Based on the CGH algorithm we proposed the architecture of the digital hologram generator which consists of input interface part, calculating part, and normalizing part. The hardware can decrease memory usage because it repeatedly use object light sources which is stored in the internal buffer. It is also operationally parallelized by vertically adding unit cells. It can generate 86 frames of HD digital hologram per 1 second for 1K light sources.

Correction of image distortion of CGH with a large diffraction angle (큰 회절각을 가진 CGH의 위치에 대한 오차의 보정)

  • Lee, Jai-Cheol;Oh, Yong-Ho;Go, Chun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.128-132
    • /
    • 2005
  • Most CGH programs use a model equation based on the diffraction angle. Therefore, if the diffraction angle is large enough, the image on a flat screen is distorted. To correct the distortion, we created the model equation from diffraction theory and verified it through experiment. We also suggest a design method that compensates for the distortion without changing the CGH program.

Null computer generated hologram test for measurement of parabolic mirror (Null CGH를 이용한 포물면경 형상 측정)

  • 김태희;김성하;문일권;이윤우
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.537-542
    • /
    • 2002
  • Null tests using two different kinds of null corrector have been discussed. A parabolic mirror was used as a surface under test. After designing, encoding, and fabricating the CGH (computer generated hologram), the null CGH test was performed. An autocollimation test was also performed using a flat mirror. The reliability of the null CGH test has been discussed by comparing the result obtained by both null tests.

Automatic Optical Inspection System for Holograms with Multiple Patterns (다중패턴 홀로그램을 위한 자동광학검사 시스템)

  • Kwon, Hyuk-Joong;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.548-554
    • /
    • 2009
  • We propose an automatic inspection system for hologram with multiple patterns. The system hardware consists of illuminations, camera, and vision processor. Multiple illuminations using LEDs are arranged in different directions to acquire each image of patterns. The system software consists of pre-processing, pattern generation, and pattern matching. The acquired images of input hologram are compared with their reference patterns by developed matching algorithm. To compensate for the positioning error of input hologram, reference patterns of hologram for different position should be generated in on-line. We apply a frequency transformation based CGH(computer-generated hologram) method to generate reference images. For the fast pattern matching, we also apply the matching method in the frequency domain. Experimental results for hologram of Korean currency are then presented to verify the usefulness of proposed system.

Fast Hologram Generating of 3D Object with Super Multi-Light Source using Parallel Distributed Computing (병렬 분산 컴퓨팅을 이용한 초다광원 3차원 물체의 홀로그램 고속 생성)

  • Song, Joongseok;Kim, Changseob;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.706-717
    • /
    • 2015
  • The computer generated hologram (CGH) method is the technology which can generate a hologram by using only a personal computer (PC) commonly used. However, the CGH method requires a huge amount of calculational time for the 3D object with a super multi-light source or a high-definition hologram. Hence, some solutions are obviously necessary for reducing the computational complexity of a CGH algorithm or increasing the computing performance of hardware. In this paper, we propose a method which can generate a digital hologram of the 3D object with a super multi-light source using parallel distributed computing. The traditional methods has the limitation of improving CGH performance by using a single PC. However, the proposed method where a server PC efficiently uses the computing power of client PCs can quickly calculate the CGH method for 3D object with super multi-light source. In the experimental result, we verified that the proposed method can generate the digital hologram with 1,5361,536 resolution size of 3D object with 157,771 light source in 121 ms. In addition, in the proposed method, we verify that the proposed method can reduce generation time of a digital hologram in proportion to the number of client PCs.

Analysis of CGH and Watermarking Method using Global 2DDCT (전역 2차원 DCT를 이용한 디지털 홀로그램의 분석 및 워터마킹 기법)

  • Choi, Hyun-Jun;Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1267-1274
    • /
    • 2007
  • In this paper, we propose a digital watermarking algorithm for digital hologram generated by computer generated hologram(CGH) method. Digital hologram generated by a computer calculation(CGH) is one of the most expensive contents and its usage is being expanded. Thus, it is highly necessary to protect the ownership of digital hologram. In this paper two digital watermarking schemes are introduced hologram-domain and global 2DDCT-domain scheme. Proposed watermarking scheme showed very high imperceptibility and quite high robustness against the attacks. The purpose of this paper is to introduce these global 2DDCT based watermarking schemes. Thus, we expect that these and the contents in this paper can be very useful bases for the further digital watermarking schemes of the digital holograms.

HI-SPEED COMPUTER-GENERATED HOLOGRAM ALGORITHM

  • Choi, Hyun-Jun;Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.242-245
    • /
    • 2009
  • This paper proposes an algorithm that increases the speed of generating a Fresnel hologram using a recursive addition operation covering the whole coordinate array of a digital hologram. The 3D object designed to calculate the digital hologram used the depth-map image produced by computer graphics (CG). The proposed algorithm is a technique that performs CGH (computer generated hologram) operation with only the recursive addition from the hologram's whole coordinates by analyzing the regularity between the 3D object and the digital hologram coordinates. The experimental results showed that the proposed algorithm increased operation speed by 30% over the technique using the conventional CGH equation.

  • PDF

Novel Optimization Method of Phase-Only Computer-Generated Hologram Using the Phase-Shift Characteristic (위상천이특성을 이용한 새로운 Phase-Only CGH 계산)

  • Kim, Tae-Hyeon;Kim, Bong-Sik;Park, Woo-Sang
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • In this study we propose the novel optimization method of the phase-only computer-generated hologram (CGH), to improve calculation speed compared to the conventional method. While the conventional method is calculated using numerical analysis, the novel method is calculated using the phase-shift characteristic of Fourier transformation. In addition, the selectivity of noise filtering lets it decrease the calculation time. The validity of the reconstructed image using the novel method is verified by comparing simulation results to ideal and conventional data, and the improvement of texture and sharpness of the reconstructed image is confirmed by simulation.

Full-color Non-hogel-based Computer-generated Hologram from Light Field without Color Aberration

  • Min, Dabin;Min, Kyosik;Park, Jae-Hyeung
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.409-420
    • /
    • 2021
  • We propose a method to synthesize a color non-hogel-based computer-generated-hologram (CGH) from light field data of a three-dimensional scene with a hologram pixel pitch shared for all color channels. The non-hogel-based CGH technique generates a continuous wavefront with arbitrary carrier wave from given light field data by interpreting the ray angle in the light field to the spatial frequency of the plane wavefront. The relation between ray angle and spatial frequency is, however, dependent on the wavelength, which leads to different spatial frequency sampling grid in the light field data, resulting in color aberrations in the hologram reconstruction. The proposed method sets a hologram pixel pitch common to all color channels such that the smallest blue diffraction angle covers the field of view of the light field. Then a spatial frequency sampling grid common to all color channels is established by interpolating the light field with the spatial frequency range of the blue wavelength and the sampling interval of the red wavelength. The common hologram pixel pitch and light field spatial frequency sampling grid ensure the synthesis of a color hologram without any color aberrations in the hologram reconstructions, or any loss of information contained in the light field. The proposed method is successfully verified using color light field data of various test or natural 3D scenes.

Fast Generation of Digital Hologram Based on Multi-GPU (Multi-GPU 기반의 고속 디지털 홀로그램 생성)

  • Song, Joong-Seok;Park, Jung-Sik;Seo, Young-Ho;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1009-1017
    • /
    • 2011
  • Fast generation of digital hologram is of importance for real-time holography broadcasting. In this paper, we propose such a method that parallelizes the Computer-Generated Holography (CGH) algorithm for digital hologram generation and make it faster using Multi Graphic Processing Unit (Multi-GPU) with help of the Compute Unified Device Architecture (CUDA) and the Open Multi-Processing (OpenMP). In addition, we propose optimization methods such as fixation variable, vectorization, and loop unrolling for making the CGH algorithm much faster. Experimental results show that our method is about 9,700 times faster than a CPU-based one.