• Title/Summary/Keyword: CGC

Search Result 39, Processing Time 0.018 seconds

Methodological Research on the Instruments of Fatty Acids Determination (지방산의 기기 측정 방법에 관한 연구)

  • 박선미;안명수
    • Korean journal of food and cookery science
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 1991
  • In this study, several standard fatty acids were analyzed by three analysis instruments. And also, for the two kinds of soybean oils, fatty acids compositions were determined by three instruments. The results were obtained as follows: 1. In the case of Gas Chromatography (GC), standard fatty acids (Myristic, Stearic, Linoleic, Linolenic, Arachidonic acid) were determined with high reproducibility, but oleic acid/elaidic acid were not seperated. By Capillary Gas Chromatography (CGC), most of standard fatty acids were determined with very high reproducibility than saturated fatty acids, and palmitic acid/oleic acid were not seperated. 2. In the analytical ability of cis-trans fatty acids isomer (oleic acid/elaidic acid), CGC was shown better analytical ability of geometrical isomer than HPLC. Oleic acid/elaidic acid were not seperated by packed column (15% DEGS). The rquire time for standard fatty acids analysis was as follows; GC, 7.21 min., CGC, 9.84 min., HPLC, 24.48 min. 3. The major compositions of fatty acids of each soybean oil (CSOY; refined, DSOY; unrefined) by GC and CGC were linoleic acid, oleic acid, palmitic acid, linolenic acid and stearic acid. But in the case of HPLC, palmitic acid/oleic acid were not seperated. Analytical ability of three instruments on fatty acids composition in each soybean oil was same trend as in the standard fatty acids mixture.

  • PDF

Binding Mode of [Ruthenium(II)$(1,10-Phenanthroline)_2L]^{2+}\;to\;Poly(dG){\cdot}poly( dC){\cdot}poly(dC)^+$ Triplex DNA

  • Jo, Chang Beom;Jo, Tae Seop;Kim, Bok Jo;Han, Seong Uk;Jeong, Maeng Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1052-1054
    • /
    • 2000
  • Binding geometries of $[Ru(II)(110-phenanthroline)_2L]^2+$, complexes (where L = dipyrido [3,2-a:2',3'-c]phena-zine (DPPZ) or benzodipyrido[3,2-a:2',3'-c] phenazine (BDPPZ)) to poly(dG)${\cdot}$poly(dC)${\cdot}$poly(dC) + triplex DNA (CGC + triplex) has been investigated by linear dichroism and normal absorption spectroscopy. Analysis of the linear dichroism for the CGC+ triplex and $[Ru(II)(phen)_2BDPPZ]^2+$ complex indicates that the extended ligand of the metal complex lie perpendicular to the polynucleotide helix axis. Together with strong hypochromism and red shift in the interligand absorption region, we concluded that the extended BDPPZ or DPPZ ligand in-tercalated between the bases of polynucleotide. The spectral properties of the metal complexes bound to CGC+ triplex are similar to those bound to $poly(dA)[poly(dT)]^2$ triplex (Choi et al., Biochemistry 1997, 36, 214), sug-gesting that the metal complex is located in the minor groove of the CGC+ triplex.

Studies on Ethylene and Styrene Copolymerizations with Dinuclear Constrained Geometry Complexes; Effects of Length of Bridge (두 금속 Constrained Geometry Complexes을 이용한 에틸렌과 스티렌 공중합 연구; 다리결합 길이의 영향)

  • Yoon Keun-Byoung;Bae Sang-Geun;Lee Chul-Woo;Noh Seok-Kyun;Lee Dong-Ho
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.432-436
    • /
    • 2006
  • The new dinuclear CGC (constrained geometry complexes) with indenyl and methyl sub-stituted indenyl and polymethylene bridge have been synthesized, and the copolymerization of ethylene and styrene has been studied in the presence of methylalumionoxane. The activity of 12-methylene and 9-methylene bridged dinuclear CGC were 4 times higher than that of 6-methylene bridged dinucleay CGC. This result might be understood by the implication that the steric effect rather than the electronic effect nay play a major role to direct the polymerization behavior of the dinuclear CGC. The dinuclear CGCs are very efficient to incorporate styrene in backbone. The styrene contents in the formed co-polymers ranged from 6 to 45 mol% according to the polymerization conditions. The melting temperature of copolymers disappeared at high content of styrene (about 11 mol%) There is no styrene-styrene diblock sequence in copolymers. This result Indicates that the dinuclear CGC are very effective to generate random copolymer of ethylene and styrene.

Relation of Structural Features of Dinuclear Constrained Geometry Catalysts with Copolymerization Properties of Ethylene and 1-Hexene (이핵 CGC의 구조적인 특성과 에틸렌/1-헥센의 공중합 거동과의 관계)

  • Cao, Phan Thuy My;Nguyen, Thi Le Nhon;Nguyen, Thi Le Thanh;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Effects of structural features of 4 dinuclear constrained geometry catalysts having paraxylene derivative bridge (DCGC) on copolymerization of ethylene and 1-hexene were investigated. The bridges of three catalysts have para-xylene backbone with a different substituent at benzene ring. The substituents were hydrogen (Catalyst 1), isopropyl (Catalyst 2), n-hexyl (Catalyst 3) and 1-octyl (Catalyst 4). It was found that Catalyst 1 having hydrogen as a substituent exhibited the greatest activity among the four dinuclear CGCs. On the other hand, Catalyst 2 containing isopropyl as a substituent showed the smallest activity. Very interestingly, Catalyst 2 was able to produce about 6 times higher molecular weight polymer than Catalyst 3 and 4. Catalyst 3 and 4 having a long alkyl chain substituent revealed the biggest comonomer response to generate polyethylene copolymer containing more than 40% 1-hexene contents. These results suggest that the control of the substituent of para-xylene bridge of dinuclear CGC can provide a proper method to adjust the microstructure of polyethylene copolymers.

Effect on the Growth Condition of Chionanthus retusa, Roadside Tree in Cheongyechon (청계천 이팝나무 가로수 생육환경이 성장에 미치는 영향)

  • Yoon, Sowon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.129-138
    • /
    • 2008
  • This study was carried out to examine the growth condition of Chionanthus retusa, roadside tree in Cheongyechon (CGC) and to investigate the relationship soil characteristics and tree vitality and chlorophyll contents of it. Growth condition of tree (condition of flower, leaves and branch, % of flowering, height, diameter at breast height, width, vitality and chlorophyll contents) and physiochemical relation item (pH, organic matter, K, Mg, Na, Ca, P) were investigated. The result are as follows : 1. The growth condition of flower, leaves and branch in the left side of CGC is better than the right side since the quantity of sunshine of left side of CGC is much more than the right side. 2. The average pH was alkaline. P and organic contents were much lower than the standards. 3. Tree vitality and chlorophyll contents were bad where were high user density and high buildings, such as 1, 2 area near Jong-gak and jongro 3 ga. Among the physiochemical factors of soil which affect tree vitality, K and P were found to be the main factors. Therefore, in order to improve the growth environment of roadside tree in CGC, it is needed to do periodical soil fertilizing and improve physical characteristics of soil such as, permeability and porosity by soil conditioner.

Capillary Water Absorption Properties of Steel Fiber Reinforced Coal Gangue Concrete under Freeze-Thaw Cycles

  • Qiu, Jisheng;Zheng, Juanjuan;Guan, Xiao;Pan, Du;Zhang, Chenghua
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.451-458
    • /
    • 2017
  • The service life of coal gangue concrete(CGC) strongly depends on the capillary water absorption, this water absorption is susceptible to freeze-thaw cycles. In this paper, the cumulative water absorption and sorptivity were obtained to study the effects of 0, 0.5, 1.0, and 1.5 % steel fiber volume fraction added on the water absorption of CGC. Sorptivity and freeze-thaw tests were conducted, and the capillary water absorption was evaluated by the rate of water absorption(sorptivity). Three prediction models for the initial sorptivity of steel fiber reinforced coal gangue concrete(SFRCGC) under freeze-thaw cycles were established to evaluate the capillary water absorption of SFRCGC. Results showed that, without freeze-thaw cycles, the water absorption of CGC decreased when steel fiber at 1.0 % volume fraction was added, however, the water absorption increased with the addition of 0.5 or 1.5 % steel fibers. Once the SFRCGC specimens were exposed to freeze-thaw cycles, the water absorption of SFRCGC significantly increased, and 1.0 % steel fiber in volume fraction added to CGC caused the lowest water absorption, except for the case of the sample without steel fibers added. The CGC with steel fiber at 1.0 % volume fraction performed better. The SFRCGC has a strong response to freeze-thaw cycles. Results also showed that the linear function prediction model is practical in the field of engineering because of its simple form and a relatively high precision. Although the polynomial prediction model presents the highest computation precision among the three models, the complicated form and too many coefficients make it impractical for engineering applications.

The Gelation Studies. of N-Methylolated PAAms in Aqueous Media

  • Cheon-Koog Kim;Jeong-In Sohn
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.34-34
    • /
    • 1993
  • The gelation phenomena of N-methylolated PAAm (M-PAAm) in aqueous media was studied. The critical gelation concentration (CGC) was very close to the calculated $C^*$ of the scaling theory. But the CGC of lower MW M-PAAm deviated from $C^*$ due to contamination of small molecules. We propose that the CGC is the close packing configuration of polymer molecules in solution. The experimental results of the gelation of M-PAAm/PAAm mixture proved that the close packing configuration is essential to make a gel. We calculated the minimum quantity of M-PAAm to make M-PAAm/PAAm mixture a gel by using the close packing configuration. We used a lattice model.

Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway

  • Lee, Eunkyung;Choi, So-Young;Yang, Jae-Ho;Lee, Youn Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.399-406
    • /
    • 2016
  • Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway.

Preparation of Dinuclear, Constrained Geometry Zirconium Complexes with Polymethylene Bridges and an Investigation of Their Polymerization Behavior

  • Noh, Seok-Kyun;Jiang, Wen-Long
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.100-106
    • /
    • 2004
  • We have prepared the polymethylene-bridged, dinuciear, half-sandwich constrained geometry catalysts (CGC)[Zr(η$\^$5/:η$^1$-C$\_$9/H$\_$5/SiMe$_2$NCMe$_3$)]$_2$[(CH$_2$)$\_$n/][n=6(9), n=12(10)]by treating 2 equivalents of ZrCl$_4$with the corresponding tetralithium salts of the ligands in toluene. $^1$H and $\^$13/C NMR spectra of the synthesized complexes provide firm evidence for the anticipated dinuciear structure. In $^1$H NMR spectra, two singlets representing the methyl group protons bonded at the Si atom of the CGC are present at 0.88 and 0.64 ppm, which are considerably downfield positions relative to the shifts of 0.02 and 0.05 ppm of the corresponding ligands. To investigate the catalytic behavior of the prepared dinuciear catalysts, we conducted copolymerizations of ethylene and styrene in the presence of MMAO. The prime observation is that the two dinuclear CGCs 9 and 10 are not efficient for copo-lymerization, which definitely distinguishes them from the corresponding titanium-based dinuclear CGC. These species are active catalysts, however, for ethylene homopolymerization; the activity of catalyst 10, which contains a 12-methylene bridge, is larger than that of 9 (6-methylene bridge), which indicates that the presence of the longer bridge between the two active sites contributes more effectively to facilitate the polymerization activity of the dinuciear CGC. The activities increase as the polymerization temperature increases from 40 to 70$^{\circ}C$. On the other hand, the molecular weights of the polyethylenes are reduced when the polymerization temperature is increased. We observe that dinuciear metallocenes having different-length bridges give different polymerization results, which reconfirms the significant role that the nature of the bridging ligand has in controlling the polymerization properties of dinuclear catalysts.

Thermoresponsive Phase Transitions of PLA-block-PEO-block-PLA Triblock Stereo-Copolymers in Aqueous Solution

  • Lee, Hyung-Tak;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.359-364
    • /
    • 2002
  • A series of PLA-PEO-PLA triblock stereo-copolymers with varying PLA/PEO and L-DL-LA ratios were synthesized via ring opening pelymerizations. Aqueous solutions of these copolymers undergo thermo-responsive phase transitions as the temperature monotonically increases. Further study shows that there is a critical gel concentration (CGC), and also lower and upper critical gel temperatures (CGTs), at which the thermo-responsive phase transition occurs. The CGC and CGTs are affected by various factors such as block length, as well as the compositions of the PLA blocks and of the additives. In particular, the changes in the phase diagram produced by varying the L-/DL-LA ratio in the PLA blocks were determined to be mainly due to consequent stereo-regularity changes in the PLA blocks.