Browse > Article

Relation of Structural Features of Dinuclear Constrained Geometry Catalysts with Copolymerization Properties of Ethylene and 1-Hexene  

Cao, Phan Thuy My (School of Display and Chemical Engineering, Yeungnam University)
Nguyen, Thi Le Nhon (School of Display and Chemical Engineering, Yeungnam University)
Nguyen, Thi Le Thanh (School of Display and Chemical Engineering, Yeungnam University)
Noh, Seok-Kyun (School of Display and Chemical Engineering, Yeungnam University)
Publication Information
Polymer(Korea) / v.35, no.6, 2011 , pp. 505-512 More about this Journal
Abstract
Effects of structural features of 4 dinuclear constrained geometry catalysts having paraxylene derivative bridge (DCGC) on copolymerization of ethylene and 1-hexene were investigated. The bridges of three catalysts have para-xylene backbone with a different substituent at benzene ring. The substituents were hydrogen (Catalyst 1), isopropyl (Catalyst 2), n-hexyl (Catalyst 3) and 1-octyl (Catalyst 4). It was found that Catalyst 1 having hydrogen as a substituent exhibited the greatest activity among the four dinuclear CGCs. On the other hand, Catalyst 2 containing isopropyl as a substituent showed the smallest activity. Very interestingly, Catalyst 2 was able to produce about 6 times higher molecular weight polymer than Catalyst 3 and 4. Catalyst 3 and 4 having a long alkyl chain substituent revealed the biggest comonomer response to generate polyethylene copolymer containing more than 40% 1-hexene contents. These results suggest that the control of the substituent of para-xylene bridge of dinuclear CGC can provide a proper method to adjust the microstructure of polyethylene copolymers.
Keywords
metallocene; dinuclear CGC; ethylene/1-hexene copolymerization; bridge substituent effect; microstructure control of polymer;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Q. Sun, Y. Nie, H. Ren, X. H. Xiao, Z. Z. Cheng, and H. B. Schumann, Eur. Polym. J., 44, 2980 (2008).   DOI   ScienceOn
2 N. Guo, C. L. Stern, and T. J. Marks, J. Am. Chem. Soc., 130, 2246 (2008).   DOI   ScienceOn
3 A. Motta, I. L. Fragala, and T. J. Marks, J. Am. Chem. Soc., 131, 3974 (2009).   DOI   ScienceOn
4 J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. Knight, and S. Lai, Eur. Pat Appl., Ep. 416 (1991).
5 J. P. Fackler, Inorganic Syntheses, A Wiley Interscience Publication, New York, p.XXI.135 (1982).
6 H. Braunschweig and F. M. Breitling, Coord. Chem. Rev., 250, 2691 (2006).   DOI   ScienceOn
7 A. S. Rodrigues and J. F. Carpentier, Coord. Chem. Rev., 252, 2137 (2008).   DOI   ScienceOn
8 L. K. Johnson, S. D. Ittel, and M. Brookhart, Chem. Rev., 100, 1169 (2000).   DOI   ScienceOn
9 K. Matyjaszewski and J. H. Xia, Chem. Rev., 101, 2921 (2001).   DOI   ScienceOn
10 C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101, 3661 (2001).   DOI   ScienceOn
11 R. Poli, Angew. Chem., Int. Ed., 45, 5058 (2006).   DOI   ScienceOn
12 K. Matyjaszewski, S. Gaynor, and J. S. Wang, Macromolecules, 28, 2093 (1995).   DOI   ScienceOn
13 M. N. Nguyen, C. Bressy, and A. Margaillan, J. Polym. Sci. Part A: Polym. Chem., 43, 5680 (2005).   DOI   ScienceOn
14 N. T. B. Linh, N. T. D. Huyen, S. K. Noh, W. S. Lyoo, S. S. Han, and D. H. Lee, J. Organomet. Chem., 694, 3438 (2009).   DOI   ScienceOn
15 S. K. Noh, W. Jung, H. Oh, Y. R. Lee, and W. S. Lyoo, J. Organomet. Chem., 691, 5000 (2006).   DOI   ScienceOn
16 X. H. Xiao, J. Q. Sun, X. Lia, H. F. Li, and Y. G. Wang, J. Mol. Catal. A : Chem., 267, 86 (2007).   DOI
17 S. K. Noh, S. Kim, J. Kim, D. H. Lee, K. B. Yoon, H. B. Lee, and S. W. Lee, J. Polym. Sci. Part A: Polym. Chem., 35, 3717 (1997).   DOI   ScienceOn
18 S. K. Noh, M. Lee, D. H. Kum, K. Kim, W. S. Lyoo, and D. H. Lee, J. Polym. Sci. Part A: Polym. Chem., 42, 1712 (2004).   DOI   ScienceOn
19 X. H. Xiao, B. C. Zhu, X. T. Zhao, Y. A. Wang, and J. Q. Sun, Inorg. Chim. Acta, 360, 2432 (2007).   DOI   ScienceOn