Preparation of Dinuclear, Constrained Geometry Zirconium Complexes with Polymethylene Bridges and an Investigation of Their Polymerization Behavior

  • Noh, Seok-Kyun (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Jiang, Wen-Long (School of Chemical Engineering and Technology, Yeungnam University)
  • Published : 2004.02.01

Abstract

We have prepared the polymethylene-bridged, dinuciear, half-sandwich constrained geometry catalysts (CGC)[Zr(η$\^$5/:η$^1$-C$\_$9/H$\_$5/SiMe$_2$NCMe$_3$)]$_2$[(CH$_2$)$\_$n/][n=6(9), n=12(10)]by treating 2 equivalents of ZrCl$_4$with the corresponding tetralithium salts of the ligands in toluene. $^1$H and $\^$13/C NMR spectra of the synthesized complexes provide firm evidence for the anticipated dinuciear structure. In $^1$H NMR spectra, two singlets representing the methyl group protons bonded at the Si atom of the CGC are present at 0.88 and 0.64 ppm, which are considerably downfield positions relative to the shifts of 0.02 and 0.05 ppm of the corresponding ligands. To investigate the catalytic behavior of the prepared dinuciear catalysts, we conducted copolymerizations of ethylene and styrene in the presence of MMAO. The prime observation is that the two dinuclear CGCs 9 and 10 are not efficient for copo-lymerization, which definitely distinguishes them from the corresponding titanium-based dinuclear CGC. These species are active catalysts, however, for ethylene homopolymerization; the activity of catalyst 10, which contains a 12-methylene bridge, is larger than that of 9 (6-methylene bridge), which indicates that the presence of the longer bridge between the two active sites contributes more effectively to facilitate the polymerization activity of the dinuciear CGC. The activities increase as the polymerization temperature increases from 40 to 70$^{\circ}C$. On the other hand, the molecular weights of the polyethylenes are reduced when the polymerization temperature is increased. We observe that dinuciear metallocenes having different-length bridges give different polymerization results, which reconfirms the significant role that the nature of the bridging ligand has in controlling the polymerization properties of dinuclear catalysts.

Keywords

References

  1. Macromolecular Rapid Commun. v.22 J.N.Pedeutour;K.Radhakrishnan;H.Cramail;A.Deffieux https://doi.org/10.1002/1521-3927(20011001)22:14<1095::AID-MARC1095>3.0.CO;2-R
  2. Chem. Rev. v.100 J.A.Gladysz(ed.)
  3. Topics Catal. v.15 T.J.Marks;J.C.Stevens(eds.)
  4. Angew Chem. Int. Ed. v.38 G.J.P.Britovsek;V.C.Gibson;D.F.Wass https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4<428::AID-ANIE428>3.0.CO;2-3
  5. Coord. Chem. Rev. v.203 S.Mecking https://doi.org/10.1016/S0010-8545(99)00229-5
  6. Chem. Rev. v.98 A.L.McKnight;R.M.waymouth https://doi.org/10.1021/cr940442r
  7. Eur. Pat. Appl. 0416815A2 J.C.Stevens;F.J.Timmers;D.R.Wilson;G.F.Schmidt;P.N.Nickias;R.K.Rosen;G.W.McKnight;S.Lai
  8. Eur. Pat. Appl. 0418044A2 J.C.Stevens;D.R.Neithamer
  9. J. Polym. Sci. Part A:Polym. Chem. v.35 F.G.Sernetz;R.Mulhaupt;F.Amor;T.Eberle;J.Okuda https://doi.org/10.1002/(SICI)1099-0518(199706)35:8<1571::AID-POLA26>3.0.CO;2-3
  10. Macromolecules v.35 K.Nomura;H.Okumura;T.Komatsu;N.Naga https://doi.org/10.1021/ma0200773
  11. Macromolecules v.33 K.Nomura;T.Komatsu;Y.Imanishi https://doi.org/10.1021/ma0011284
  12. Macromolecules v.35 L.Caporaso;L.Jzzo;I.Sisti;L.Oliva https://doi.org/10.1021/ma011489z
  13. Macromolecules v.32 A.L.McKnight;R.M.Waymouth https://doi.org/10.1021/ma981365v
  14. J. Organomet. Chem. v.520 F.Amor;J.Okuda https://doi.org/10.1016/0022-328X(96)06350-4
  15. J. Am. Chem. Soc. v.124 L.Li;M.V.Metz;H.Li;M.C.Chen;T.J.Marks;L.Liable-Sands;A.L.Rheingold https://doi.org/10.1021/ja0201698
  16. Korea Polym. J. v.9 D.H.Lee;S.K.Noh
  17. J. Mol. Cat. A.:Chem. v.128 W.Spaleck;F.Kuber;B.Bachmann;C.Fritz;A.Winter
  18. J. Mol. Cat. A:Chem. v.128 K.Soga;H.T.Ban;T.Uozumi https://doi.org/10.1016/S1381-1169(97)00180-5
  19. J. Polym. Sci. Part A:Polym. Chem. v.35 S.K.Noh;S.Kim;J.Kim;D.H.Lee;K.B.Yoon;H.B.Lee;S.W.Lee;W.S.Huh https://doi.org/10.1002/(SICI)1099-0518(199712)35:17<3717::AID-POLA11>3.0.CO;2-G
  20. J. Organomet. Chem. v.580 S.K.Noh;J.Kim;J.Jung;C.S.Ra;D.H.Lee;H.B.Lee;S.W.Lee;W.S.Huh https://doi.org/10.1016/S0022-328X(98)01085-7
  21. J. Organomet. Chem. v.595 J.Jung;S.K.Noh;D.H.Lee;S.K.Park;H.J.Kim https://doi.org/10.1016/S0022-328X(99)00576-8
  22. J. Organomet. Chem. v.667 S.K.Hoh;J.Lee;D.H.Lee https://doi.org/10.1016/S0022-328X(02)02125-3