• Title/Summary/Keyword: CFRP

Search Result 1,275, Processing Time 0.028 seconds

Behavior of CFST columns with inner CFRP tubeunder biaxial eccentric loading

  • Li, Guochang;Yang, Zhijain;Lang, Yan;Fang, Chen
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1487-1505
    • /
    • 2016
  • This paper presents the results of an experimental study on the behavior of a new type of composite FRP-concrete-steel member subjected to bi-axial eccentric loading. This new type of composite member is in the form of concrete-filled square steel tube slender columns with inner CFRP (carbon fiber-reinforced polymer) circular tube, composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes. Tests on twenty-six specimens of high strength concrete-filled square steel tube columns with inner CFRP circular tube columns (HCFST-CFRP) were carried out. The parameters changed in the experiments include the slenderness ratio, eccentric ratio, concrete strength, steel ratio and CFRP ratio. The experimental results showed that the failure mode of HCFST-CFRP was similar to that of HCFST, and the specimens failed by local buckling because of the increase of lateral deflection. The steel tube and the CFRP worked together well before failure under bi-axial eccentric loading. Ductility of HCFST-CFRP was better than that of HCFST. The ultimate bearing capacity of test specimen was calculated with simplified formula, which agreed well with test results, and the simplified formula can be used to calculate the bearing capacity of HCFSTF within the parameters of this test.

Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet

  • Park, Jai-woo;Yoo, Jung-han
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.441-465
    • /
    • 2015
  • This paper presents the experimental results of flexural and compression steel members strengthened with carbon fiber reinforced polymers (CFRP) sheets. In the flexural test, the five specimens were fabricated and the test parameters were the number of CFRP ply and the ratio of partial-length bonded CFRP sheets of specimen. The CFRP sheet strengthened steel beam had failure mode: CFRP sheet rupture at the mid span of steel beams. A maximum increase of 11.3% was achieved depending on the number of CFRP sheet ply and the length of CFRP sheet. In the compression test, the nine specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the length of the specimen. From the tests, for short columns it was observed that two sides would typically buckle outward and the other two sides would buckle inward. Also, for long columns, overall buckling was observed. A maximum increase of 57% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 60 transversely.

Critical Influence of Rivet Head Height on Corrosion Performance of CFRP/Aluminum Self-Piercing Riveted Joints

  • Karim, Md Abdul;Bae, Jin-Hee;Kam, Dong-Hyuck;Kim, Cheolhee;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.92-101
    • /
    • 2019
  • This study investigates how rivet head height affects the corrosion performance of carbon fiber reinforced plastic (CFRP) to aluminum alloy self-piercing riveted joints. Specimens with two different head heights were prepared. A rivet head protruding out of the top CFRP laminate forms the proud head height while a rivet head penetrating into the top CFRP generates the flush head height. The salt spray test evaluated corrosion performance. The flush head joints suffered from severe corrosion on the rivet head. Thus, the tensile shear load of flush head joints was substantially reduced. Electrochemical corrosion tests investigated the corrosion mechanisms. The deeper indentation of the flush head height damaged the CFRP around the rivet head. The exposure of damaged fibers from the matrix increased the cathodic potential of local CFRP. The increased potential of damaged CFRP accelerated the galvanic corrosion of the rivet head. After the rivet head coating material corroded, a strong galvanic couple was formed between the rivet head base metal (boron steel) and the damaged CFRP, further accelerating the flush rivet head corrosion. The results of this study suggest that rivet head flushness should be avoided to enhance the corrosion performance of CFRP to aluminum alloy self-piercing riveted joints.

Prediction of Bending Fatigue Life of Cracked Out-of-Plane Gusset Joint Repaired by CFRP Plates

  • Matsumoto, Risa;Komoto, Takafumi;Ishikawa, Toshiyuki;Hattori, Atsushi;Kawano, Hirotaka
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1284-1296
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP), plates bonding repair method is one of the simple repair methods for cracked steel structures. In this study, the influence of width of CFRP plates on bending fatigue life of out-of-plane gusset joint strengthened with CFRP plates was investigated from the experimental and numerical point of view. In the bending fatigue test of cracked out-of-plane gusset joint strengthened with CFRP plates, the effect of width of CFRP plates on crack growth life was clarified experimentally. Namely, it was revealed that the crack growth life becomes larger with increasing the width of CFRP plates. In the numerical approach, the stress intensity factor (SIF) at the surface point of a semi-elliptical surface crack was estimated based on the linear fracture mechanics. Furthermore, the extended fatigue life of cracked out-of-plane gusset joint strengthened with CFRP plates was evaluated by using the estimated SIF at the surface point and the empirical formula of the aspect ratio of semi-elliptical crack. As the results of numerical analysis, the estimated fatigue life of the specimen strengthened with CFRP plates showed the good agreement with the test results.

Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP

  • Ou, Jialing;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • The compressive strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. According to previous experimental results, the failure process and mechanism of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs is analyzed, and the loading process is divided into 3 stages, i.e., elastic stage, elasto-plastic stage and failure stage. Based on continuum mechanics, the theoretical model of C-CFRP-CFST stubs under axial compression is established based on the assumptions that steel tube and concrete are both in three-dimensional stress state and CFRP is in uniaxial tensile stress state. Equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs are deduced. Theoretical predictions from the presented equations are compared with existing experimental results. There are a total of 49 tested specimens, including 15 ones for comparison of yield strength and 44 ones for comparison of ultimate strength. It is found that the predicted results of most specimens are within an error limit of 10%. Finally, simplified equations for calculating both yield strength and ultimate strength of C-CFRP-CFST stubs are proposed.

The effect of CFRP-concrete bond mechanism on dynamic parameters of repaired concrete girders

  • Fayyadh, Moatasem M.;Razak, Hashim A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.343-354
    • /
    • 2022
  • An understanding of the mechanism of concrete girders repaired with CFRP plates and its influence on the dynamic parameters is presented in this paper. Dynamic parameters are governed by the relationship with the physical properties of concrete girders and CFRP plates as well as the adhesive layer between them. A brief explanation of the mechanism of the composite action of concrete girders repaired with CFRP is also given in this paper. Experimental work was carried out to validate the theory of the composite action. The results show a decrease in the modal parameters of CFRP repaired girders that were turned over during the repair procedure, which contrasts with the proven static-based results that CFRP plates increase the stiffness of repaired girders. The composite action theory has explained the results based on the tension and compression forces' growth at the adhesive layer between the CFRP plates and girder surface during the repair procedure. Other girders were prepared and repaired without turning over in order to avoid tension and compression forces at the adhesive layer. The experimental results show an increase in the dynamic parameters of CFRP repaired girders that were not turned over during the repair procedure, which aligns with the static-based results. The study concludes that the dynamic parameters are excellent indicators for the assessment of CFRP repaired concrete girders. The study also suggests that researchers should not turn over damaged concrete girders to repair them with CFRP plates if they intend to study the dynamic parameters, in order to avoid the proposed composite action effect on modal parameters.

Fatigue Test of Domestic CFRP Tendon and Anchorages (CFRP 긴장재 및 정착구의 피로시험)

  • Jung, Woo-Tai;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.421-422
    • /
    • 2009
  • This study investigated the fatigue test of domestic CFRP Tendon and anchorages. Test results revealed that fatigue capacity of anchorages with swage-type and bond-type satisfied the specifications. In domestic CFRP Tendon, fatigue strength of 1 million and 2 million cycle showed 992, 871MPa, respectively.

  • PDF

Mechanics feasibility of using CFRP cables in super long-span cable-stayed bridges

  • Zhang, Xin-Jun
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.567-579
    • /
    • 2008
  • To gain understanding of the applicability of CFRP cables in super long-span cable-stayed bridges, by taking a 1400 m cable-stayed bridge as example, mechanics performance including the static behavior under service load, dynamic behavior, wind stability and seismic behavior of the bridge using either steel or CFRP cables are investigated numerically and compared. The results show that viewed from the aspect of mechanics performance, the use of CFRP cables in super long-span cable-stayed bridges is feasible, and the cross-sectional areas of CFRP cables should be determined by the principle of equivalent axial stiffness.

A study on the dynamic characteristics of CFRP PLATE by modal analysis method (모우드 해석법에 의한 CFRP PLATE의 동특성에 관한 연구)

  • 한응교;오재응;방태규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • Using modal analysis method this paper examines the dynamic characteristics of composite material closely. Composite material is superior to conventional material in view of mechanical properties. So the laminate of CFRPis compared with ALPlate. As the results, the overall vibration level of CFRP is lower than that of AL Plate and is low when fiber direction is parallel to the fixed point. Also, the natural frequency of CFRP is situated in low frequency than that of AL.

  • PDF

The Damage Evaluation and Acoustic Emission Characteristics of the Unidirectional Ply CFRP Composite Materials in a Drilling Procedure (드릴작업중 발생되는 일방향 적층 CFRP 복합재료의 손상평가 및 AE특성)

  • Youn, Y.S.;Kwon, O.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1999
  • In recent years, composite materials like CFRP are increasingly used in various fields of engineering because of their unique properties which offer a high strength/density and high modulus/density. When CFRP structures are manufactured in drilling processes which are frequently practiced in an Industry, they bring on the delaminations sometimes. So, acoustic emission(AE) techniques were used for a condition monitoring of the drilling process in CFRP. In this study, the AE from CFRP estimated the delamination which reduces the strength and load carrying capacity under the drilling process and the initial delamination were well caught and measured by a video camera. From the results, it was found the relationships between failure mechanism of CFRP delamination and AE characteristics as like amplitude and count.

  • PDF