• Title/Summary/Keyword: CFD 모델

Search Result 728, Processing Time 0.04 seconds

Dynamic modeling of supersonic engine for control law design considering the air disturbance (비행중 대기 외란을 고려한 초음속 엔진 제어용 모델링 기법 연구)

  • Park, Ik-Soo;Park, Jung-Woo;Tahk, Min-Jea;Kim, Sun-Kyeong;Kim, Sung-Jin;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.546-549
    • /
    • 2009
  • Dynamic model for supersonic engine is proposed to design control law. The model structure is constructed to capture the local characteristics of supersonic and subsonic flow by using conservation equations. To evaluate the stability of control law under the disturbances, the air turbulence model is incorporated with the engine model. The combined model shows analogous results compared to performance analysis model which is good coincidence with CFD results and disturbance effects.

  • PDF

Numerical Analysis on the Effect of High-Shear in a Rotor-Stator Mixer (Rotor-Stator Mixer 전단효과에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.39-48
    • /
    • 2019
  • The turbulent flow in the rotor-stator mixer is based on shear characteristics generated by the interaction of the stator with the rotor rotating at high speed. In this study, the flow characteristics analysis of the unsteady state generated by the interaction of the rotor and the stator in the prototype model of the emulsion-fuel related mixer development was performed with the MRF and SMM by applying the ANSYS FLUENT $k-{\varepsilon}$ (RKE) turbulence model. The behavior and shear characteristics of the flow particles generated at the interface between the designed rotor and stator, and trends such as velocity distribution and turbulence eddy dissipation, were predicted and verified using the CFD analysis.

Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model (CFD-WRF 접합 모델을 이용한 도시 지역 화재 시나리오별 확산 특성 연구)

  • Choi, Hee-Wook;Kim, Do-Yong;Kim, Jae-Jin;Kim, Ki-Young;Woo, Jung-Hun
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • The characteristics of flow and pollutant dispersion for fire scenarios in an urban area are numerically investigated. A computational fluid dynamics (CFD) model coupled to a mesoscale weather research and forecasting (WRF) model is used in this study. In order to more accurately represent the effect of topography and buildings, the geographic information system (GIS) data is used as an input data of the CFD model. Considering prevailing wind, firing time, and firing points, four fire scenarios are setup in April 2008 when fire events occurred most frequently in recent five years. It is shown that the building configuration mainly determines wind speed and direction in the urban area. The pollutant dispersion patterns are different for each fire scenario, because of the influence of the detailed flow. The pollutant concentration is high in the horse-shoe vortex and recirculation zones (caused by buildings) close to the fire point. It thus means that the potential damage areas are different for each fire scenario due to the different flow and dispersion patterns. These results suggest that the accurate understanding of the urban flow is important to assess the effect of the pollutant dispersion caused by fire in an urban area. The present study also demonstrates that CFD model can be useful for the assessment of urban environment.

CFD analysis of the Disk Friction Loss on the Centrifugal Compressor Impeller (원심 압축기의 임펠러 원판 마찰 손실에 대한 CFD 해석)

  • Kim, Hyun-Yop;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.596-604
    • /
    • 2011
  • To improve the total efficiency of centrifugal compressor, it is necessary to reduce the disk friction loss, which is defined as the power loss. In this study, the disk friction loss due to the axial clearance and the surface roughness effect is analyzed and proposed the new empirical equation for the reduction of the disk friction loss. The rotating reference frame technique and the 2-equation k-${\omega}$ SST model using commercial CFD code FLUENT is used for the steady-state analysis of the centrifugal compressor impeller. According to CFD results, the disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. For the minimization of the disk friction loss on the centrifugal compressor impeller, the magnitude of the axial clearance should be designed to the same size compare with theoretical boundary layer thickness and the surface roughness should be minimized.

Validation of a CFD Analysis Model for the Calculation of CANDU6 Moderator Temperature Distribution (CANDU6 감속재 온도분포 계산을 위한 CFD 해석모델의 타당성 검토)

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.499-504
    • /
    • 2001
  • A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory(SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard $k-\varepsilon$ turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than $2.0^{\circ}C$ over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well.

  • PDF

Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps (크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용)

  • Jeong, Jong Hyun;Baek, Seok Heum;Suh, Yong Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.893-904
    • /
    • 2013
  • In this paper, a Kriging metamodel-based multi-objective optimization strategy in conjunction with an NSGA-II(non-dominated sorted genetic algorithm-II) has been employed to optimize the valve-plate shape of the axial piston pump utilizing 3D CFD simulations. The optimization process for minimum pressure ripple and maximum pump efficiency is composed of two steps; (1) CFD simulation of the piston pump operation with various combination of six parameters selected based on the optimization principle, and (2) applying a multi-objective optimization approach based on the NSGA-II using the CFD data set to evaluate the Pareto front. Our exploration shows that we can choose an optimal trade-off solution combination to reach a target efficiency of the axial piston pump with minimum pressure ripple.

A Study on Estimation of Inflow Wind Speeds in a CFD Model Domain for an Urban Area (도시 지역 대상의 CFD 모델 영역에서 유입류 풍속 추정에 관한 연구)

  • Kang, Geon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this study, we analyzed the characteristics of flow around the Daeyeon automatic weather station (AWS 942) and established formulas estimating inflow wind speeds at a computational fluid dynamics (CFD) model domain for the area around Pukyong national university using a computational fluid dynamics (CFD) model. Simulated wind directions at the AWS 942 were quite similar to those of inflows, but, simulated wind speeds at the AWS 942 decreased compared to inflow wind speeds except for the northerly case. The decrease in simulated wind speed at the AWS 942 resulted from the buildings around the AWS 942. In most cases, the AWS 942 was included within the wake region behind the buildings. Wind speeds at the inflow boundaries of the CFD model domain were estimated by comparing simulated wind speeds at the AWS 942 and inflow boundaries and systematically increasing inflow wind speeds from $1m\;s^{-1}$ to $17m\;s^{-1}$ with an increment of $2m\;s^{-1}$ at the reference height for 16 inflow directions. For each inflow direction, calculated wind speeds at the AWS 942 were fitted as the third order functions of the inflow wind speed by using the Marquardt-Levenberg least square method. Estimated inflow wind speeds by the established formulas were compared to wind speeds observed at 12 coastal AWSs near the AWS 942. The results showed that the estimated wind speeds fell within the inter quartile range of wind speeds observed at 12 coastal AWSs during the nighttime and were in close proximity to the upper whiskers during the daytime (12~15 h).

Development of a CFD Model to Study Ventilation Efficiency of Mechanically Ventilated Pig House (강제환기식 돈사의 환기 효율성 분석을 위한 CFD 모델 개발)

  • Seo, Il-Hwan;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Bitog, Jessie Pascul;Yoo, Jae-In;Kwon, Kyung-Suk;Ha, Tae-Hwan;Kim, Hyeon-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.25-37
    • /
    • 2008
  • When livestock facilities in Korea have been changed larger and denser, rearing conditions have been getting worse and the productivity of animal production have been decreased. Especially in the cold season, the minimized ventilation has generally been operated to save energy cost in Korea resulting in very poor environmental condition and high mortality. While the stability, suitability, and uniformity of the rearing condition are the most important for high productivity, the ventilation configuration is the most important to improve the rearing condition seasonally. But, it is so difficult to analyze the internal air flow and the environmental factors by conducting only field experiment because the weather condition is very unpredictable and unstable as well as the structural specification can not be easily changed by the researchers considering cost and labor. Accordingly, an aerodynamic computer simulation was adopted to this study to overcome the weakness of conducting field experiment and study the aerodynamic itself. It has been supposed that the airflow is the main mechanism of heat, mass, and momentum transfers. To make the simulation model accurately and actually, simplified pig models were also developed. The accuracy of the CFD simulation model was enhanced by 4.4 % of errors compared with the data collected from field experiments. In this paper, using the verified CFD model, the CFD computed internal rearing condition of the mechanically ventilated pig house were analyzed quantitatively as well as qualitatively. Later, this developed model will be computed time-dependently to effectively analyze the seasonal ventilation efficiency more practically and extensively with tracer gas decay theory.

Experimental, Theoretical and Numerical Studies for Concentrations and Velocities of Gas Jets (가스 제트 누출의 농도 및 속도에 대한 실험, 이론 및 수치해석 연구)

  • Bang, Boo-Hyoung;Kim, Hong-Min;Kim, Sung-Hoon;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • The results of experimental, theoretical, and numerical analysis were compared regarding the concentrations and velocities of flammable gas jets generated by pressurized leakage of methane gas. The concentration was measured through experiments for the jet dispersion process, and the velocities was calculated by applying the self-similarity theory. And the velocities and concentrations were calculated using CFD tools - FLACS and CFX- compared with the results. The difference between self-similarity model and CFD is due to the buoyancy term, which increases as the distance from a leak source increases. The results are compared with dimensionless parameters using the leak source radius and velocity components along the leak axis.

Numerical Simulation on Drag and Lift Coefficient around Ship Rudder using Computational Fluid Dynamics (전산 유체 역학을 이용한 선박 방향타 주변의 항력 및 양력 계수에 대한 수치 시뮬레이션)

  • Bon-Guk Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.97-102
    • /
    • 2023
  • Numerical simulations have been performed to investigate the hydrodynamic characteristics of the rudder since they play an important role in naval architecture fields. Although some values such as hydrodynamics forces can be measured easily in the towing tanks, it is difficult to obtain the detailed information of the flow fields such as pressure distribution, velocity distribution, vortex generation from experiments. In the present study, the effects of hydrodynamic coefficients and Reynolds number acting on the rudder were studied by using Computational Fluid Dynamics(CFD). Ansys fluent, one of commercial CFD solvers, solves the Navier-Stokes equations and the k-epsilon turbulence model is selected for the viscous model to solve RANS equations. At first, drag coefficients and lift coefficient for different angle of attack are obtained by using a CFD commercial code for KCS rudder. Secondly, the 2-D lift coefficients and drag coefficients are compared with 3-D coefficients at the same conditions. Thirdly, the effects of Reynolds number on the hydrodynamic forces are investigated.