DOI QR코드

DOI QR Code

Numerical Simulation on Drag and Lift Coefficient around Ship Rudder using Computational Fluid Dynamics

전산 유체 역학을 이용한 선박 방향타 주변의 항력 및 양력 계수에 대한 수치 시뮬레이션

  • Bon-Guk Koo (Department of Naval Architecture and Marine Engineering, Changwon National University)
  • 구본국 (창원대학교 조선해양공학과)
  • Received : 2023.02.02
  • Accepted : 2023.06.28
  • Published : 2023.06.30

Abstract

Numerical simulations have been performed to investigate the hydrodynamic characteristics of the rudder since they play an important role in naval architecture fields. Although some values such as hydrodynamics forces can be measured easily in the towing tanks, it is difficult to obtain the detailed information of the flow fields such as pressure distribution, velocity distribution, vortex generation from experiments. In the present study, the effects of hydrodynamic coefficients and Reynolds number acting on the rudder were studied by using Computational Fluid Dynamics(CFD). Ansys fluent, one of commercial CFD solvers, solves the Navier-Stokes equations and the k-epsilon turbulence model is selected for the viscous model to solve RANS equations. At first, drag coefficients and lift coefficient for different angle of attack are obtained by using a CFD commercial code for KCS rudder. Secondly, the 2-D lift coefficients and drag coefficients are compared with 3-D coefficients at the same conditions. Thirdly, the effects of Reynolds number on the hydrodynamic forces are investigated.

방향타는 조선 분야에서 중요한 역할을 하기 때문에 방향타의 유체역학적 특성을 조사하기 위해 수치 시뮬레이션이 수행되었다. 유체역학적 힘과 같은 일부 값은 예인 탱크에서 쉽게 측정할 수 있지만, 실험을 통해 압력 분포, 속도 분포, 와류 발생과 같은 유동장에 대한 자세한 정보를 얻기는 어렵다. 본 연구에서는 전산유체역학(CFD)을 이용하여 방향타에 작용하는 유체역학 계수와 레이놀즈수가 미치는 영향을 연구하였다. 상용 전산유체역학 프로그램 Ansys Fluent를 이용하여 방향타 주위의 유동 특성을 연구하였고, 이때 k-epsilon 난류 모델이 사용되었다. 먼저 CFD 상용코드를 이용하여 KCS 방향타의 받음각에 따른 항력계수와 양력계수를 구하였다. 둘째, 동일한 조건에서 2차원 양력계수와 항력계수를 3차원 계수와 비교되었다. 셋째, 레이놀즈수가 유체역학적 힘에 미치는 영향이 연구되었다.

Keywords

References

  1. W. Kwon, and W.J. Oh, "Study of numerical analysis verification with CFD about energy saving rudder," Korean Society For Fluid Machinery, 2021.
  2. H.J. Kim, S.H. Kim, J.K. Oh, D.W. Seo, "A proposal on standard rudder device design procedure by investigation of rudder design process at major Korean shipyards," J. Mar. Sci. Technol., 20, 2012, pp. 450-458.
  3. J. Liu and R. Hekkenberg, "Sixty years of research on ship rudders: Effects of design choices on rudder performance," Ships Offshore Struct., 12, 2017, pp. 495-512. https://doi.org/10.1080/17445302.2016.1178205
  4. P.C.S Kapsalis, S. Voutsinas, N.S. Vlachos, "Comparing the effect of three transition models on the CFD predictions of a NACA0012 airfoil aerodynamics," J. Wind. Eng. Ind. Aerodyn., 157, 2016, pp. 158-170. https://doi.org/10.1016/j.jweia.2016.07.007
  5. J. Morgado, R. Vizinho, M.A.R. Silvestre, and J.C. Pascoa, "XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils," Aerosp. Sci. Technol., 52, 2016, pp. 207-214. https://doi.org/10.1016/j.ast.2016.02.031
  6. T. Abramowski, "Numerical analysis of influence of selected elements on effectiveness of stream- line rudder," Polish maritime research, 3(66), Vol 17, 2010, pp 3-7. https://doi.org/10.2478/v10012-010-0022-3
  7. T.V. Nguyen and Y., Ikeda, "A numerical study on 3-D effects of marine rudder by using CFD," Proceedings of the 3rd International Symposium of Maritime Sciences, Nov. 10-14, 2014, Kobe, Japan.
  8. J.L. Liu, "Impacts of rudder profile on maneuvering performance of ships," Ocean Engineering, 124, 2016, pp 226-240.  https://doi.org/10.1016/j.oceaneng.2016.07.064