Browse > Article
http://dx.doi.org/10.14191/Atmos.2012.22.1.047

Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model  

Choi, Hee-Wook (Department of Environmental Atmospheric Sciences, Pukyong National University)
Kim, Do-Yong (BK21 Graduate School of Earth Environmental System, Pukyong National University)
Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
Kim, Ki-Young (Environmental Prediction Research Inc.)
Woo, Jung-Hun (Department of Advanced Technology Fusion, Konkuk University)
Publication Information
Atmosphere / v.22, no.1, 2012 , pp. 47-55 More about this Journal
Abstract
The characteristics of flow and pollutant dispersion for fire scenarios in an urban area are numerically investigated. A computational fluid dynamics (CFD) model coupled to a mesoscale weather research and forecasting (WRF) model is used in this study. In order to more accurately represent the effect of topography and buildings, the geographic information system (GIS) data is used as an input data of the CFD model. Considering prevailing wind, firing time, and firing points, four fire scenarios are setup in April 2008 when fire events occurred most frequently in recent five years. It is shown that the building configuration mainly determines wind speed and direction in the urban area. The pollutant dispersion patterns are different for each fire scenario, because of the influence of the detailed flow. The pollutant concentration is high in the horse-shoe vortex and recirculation zones (caused by buildings) close to the fire point. It thus means that the potential damage areas are different for each fire scenario due to the different flow and dispersion patterns. These results suggest that the accurate understanding of the urban flow is important to assess the effect of the pollutant dispersion caused by fire in an urban area. The present study also demonstrates that CFD model can be useful for the assessment of urban environment.
Keywords
Fire scenario; CFD-WRF coupled model; flow and pollutant dispersion; urban area;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 김명배, 한용식, 최병일, 도규형, 2009: 공동주택 실물화재 실험. 한국화재소방학회논문지, 23, 104-111.
2 김재진, 2007: 장애물 외관비가 주변흐름에 미치는 영향. 대기, 17, 381-391.
3 김재진, 백종진, 2005: CFD 모형을 이용한 도시 지역 흐름 및 스칼라 분산 연구. 한국기상학회지, 41, 821-837.
4 박정은, 이철규, 이한림, 정진상, 이권호, 김정은, 김영준, 2005: 중국 동부 지역 화재로 인한 광주의 대기질에 대한 영향. 대한환경공학회 2005 추계학술연구발표회논문집, 681-683.
5 소방방재청, 2009: 2009년도 화재통계연감. 소방방재청국 가화재정보센터(http://www.nfds.go.kr/).
6 이영수, 김재진, 2011: 도시지역에서 아파트 단지가흐름과 확산에 미치는 영향. 대기, 21, 95-108.
7 전흥균, 최영상, 추홍록, 2007: 다세대주택의 화재안전평가에 대한 수치해석 연구-계단실 개구부의 개폐가 화재 특성에 미치는 영향. 한국화재소방학회 논문지, 21, 15-23.
8 Baik, J.-J., and J.-J. Kim, 1999: A numerical study of flow and pollutant dispersion characteristics in urban street canyons. J. Appl. Meteor., 38, 1576-1589.   DOI
9 Baik, J.-J., R.-S. Park, H.-Y. Chun, and J.-J. Kim, 2000: A laboratory model of urban street-canyon flows. J. Appl. Meteor., 39, 1592-1600.   DOI   ScienceOn
10 Baik, J.-J., J.-J. Kim, and H. J. S. Fernando, 2003: A CFD model for simulating urban flow and dispersion. J. Appl. Meteor., 42, 1636-1648.   DOI   ScienceOn
11 Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 1667-1681.   DOI   ScienceOn
12 Brown, M. J., R. E. Lawson Jr., D. S. DeCroix, and R. L. Lee, 2000: Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel. 11th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA, Long Beach, CA, USA, 35-40.
13 Cheng, X., and F. Hu, 2005: Numerical studies on flow fields around buildings in an urban street canyon and cross-road. Adv. Atmos. Sci., 22, 290-299.   DOI   ScienceOn
14 Cox, C. F., B. Z. Cybyk, J. P. Boris, Y. T. Fung, and S. W. Chang, 2000: Coupled microscale-mesoscale modeling of contaminant transport in urban environments. Preprints, Third Symp. On the Urban Environment, Davis, CA, Amer. Meteor. Soc., 8.2. [Available online at http://ams.confex.com/ams/AugDavis/techprogram/paper_15208.htm]
15 DePaul, F. T., and C. M. Sheih, 1985: A tracer study of dispersion in an urban street canyon. Atmos. Environ., 19, 555-559.   DOI   ScienceOn
16 DePaul, F. T., and C. M. Sheih, 1986: Measurements of wind velocities in a street canyon. Atmos. Environ., 20, 455-459.   DOI   ScienceOn
17 Dudhia, J., 1996: A multi-layer soil temperature model for MM5. 6th Annual PSU/NCAR Mesoscale Model (MM5) Users Workshop, Penn. State Univ., Boulder, CO., USA.
18 Ehrhard, J., I. A. Khatib, C. Winkler, R. Kunz, N. Moussiopoulos, and G. Ernst, 2000: The microscale model MIMO: Development and assessment. J. Wind Eng. Ind. Aerodyn., 85, 163-176.   DOI   ScienceOn
19 Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
20 Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.   DOI   ScienceOn
21 Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme, The representation of cumulus convection in numerical models. Edited by K. A. Emanuel and D. J. Raymond, Am. Meteorol. Soc., Boston, MA., USA, 246 pp.
22 Kim, J.-J., and J.-J. Baik, 1999: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. J. Appl. Meteor., 38, 1249-1261.   DOI
23 Kim, J.-J., and J.-J. Baik, 2001: Urban street-canyon flows with bottom heating. Atmos. Environ., 35, 3395-3404.   DOI   ScienceOn
24 Kim, J.-J., and J.-J. Baik, 2005: Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow. Adv. Atmos. Sci., 22, 230-237.   DOI   ScienceOn
25 Lee, I. Y., and H. M. Park, 1994: Parameterization of the pollutant transport and dispersion in urban street canyons. Atmos. Environ., 28, 2343-2349.   DOI   ScienceOn
26 Mitchell, K., 2005: The community Noah Land-Surface Model (LSM). [Available online at ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1]
27 Liu, C.-H., and M. C. Barth, 2002: Large-eddy simulation of flow and scalar transport in a modeled street canyon. J. Appl. Meteor., 41, 660-673.   DOI   ScienceOn
28 Liu, H. Z., B. Liang, F. R. Zhu, B. Y. Zhang, and J. G. Sang, 2003: A laboratory model for the flow in urban street canyons induced by bottom heating. Adv. Atmos. Sci., 20, 554-564.   DOI   ScienceOn
29 Meroney, R. N., M. Pavageau, S. Rafailidis, and M. Schatzmann, 1996: Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyon. J. Wind Eng. Ind. Aerodyn., 62, 37-56.   DOI   ScienceOn
30 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102(D14), 16663-16682.   DOI
31 Nakamura, Y., and T. R. Oke, 1988: Wind, temperature, and stability conditions in an east-west oriented urban canyon. Atmos. Environ., 22, 2691-2700.   DOI   ScienceOn
32 Patankar, S. V., 1980: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 197 pp.
33 Rotach, M. W., 1995: Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ., 29, 1473-1486.   DOI   ScienceOn
34 Sini, J.-F., S. Anquetin, and P. G. Mestayer, 1996: Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ., 30, 2659-2677.   DOI   ScienceOn
35 Uehara, K., S. Murakami, S. Oikawa, and S. Wakamatsu, 2000: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos. Environ., 34, 1553-1562.   DOI   ScienceOn
36 Versteeg, H. K., and W. Malalasekera, 1995: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, Malaysia, 257 pp.
37 Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziable, 1992: Development of turbulence models for shear flow by a double expansion technique. Physics of Fluids, 4, 1510-1520.   DOI