• Title/Summary/Keyword: CFD 검증

Search Result 351, Processing Time 0.029 seconds

Effect of Inlet Shape on Thermal Flow Characteristics for Waste Gas in a Thermal Decomposition Reactor of Scrubber System (반도체 폐가스 처리용 열분해반응기의 입구형상이 열유동 특성에 미치는 영향에 관한 수치해석 연구)

  • Yoon, Jonghyuk;Kim, Youngbae;Song, Hyungwoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.510-518
    • /
    • 2018
  • Recently, lots of interests have been concentrated on the scrubber system that abates waste gases produced from semiconductor manufacturing processes. An effective design of the thermal decomposition reactor inside a scrubber system is significantly important since it is directly related to the removal performance of pollutants and overall stabilities. In the present study, a computational fluid dynamics (CFD) analysis was conducted to figure out the thermal and flow characteristics inside the reactor of wet scrubber. In order to verify the numerical method, the temperature at several monitoring points was compared to that of experimental results. Average error rates of 1.27~2.27% between both the results were achieved, and numerical results of the temperature distribution were in good agreement with the experimental data. By using the validated numerical method, the effect of the reactor geometry on the heat transfer rate was also taken into consideration. From the result, it was observed that the flow and temperature uniformity were significantly improved. Overall, our current study could provide useful information to identify the fluid behavior and thermal performance for various scrubber systems.

Study on the optimal design of floor exhaust system using computational fluid dynamics for subway platform (수치해석을 활용한 승강장 바닥배기 시스템 최적화 연구)

  • Namgung, Hyeong-Gyu;Park, Sechan;Kim, Minhae;Kim, Soo-Yeon;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.443-449
    • /
    • 2017
  • The imbalance of air supply and the exhaust on subway platforms has led to the installation of platform screen doors in underground subway stations. This imbalance causes the accumulation of pollutants on the platform and loss of comfort due to the lack of ventilation. In this study, a floor exhaust system was optimized using computational fluid dynamics (CFD) and an optimization program. The optimized floor exhaust system was manufactured and tested experimentally to evaluate the particle collection efficiency. CFX 17.0 and HEEDS were used to analyze the flow field and optimize the principal dimensions of the exhaust system. As a result of the three-step optimization, the optimized floor exhaust system had a total height of 1.78 m, pressure drop of 430 Pa, and particle collection capability of 61%. A fine dust particle collection experiment was conducted using a floor exhaust system that was manufactured at full scale based on the optimized design. The experiment indicated about 65% particle collection efficiency. Therefore, the optimized design can be applied to subway platforms to draw in exhaust air and remove particulate matter at the same time.

Effect of Nozzle Distance and Angle in the Iron-ore Sintering Dual Burner on Flame Characteristics (철광석 소결용 듀얼 버너의 노즐 간격과 각도가 화염 특성에 미치는 영향)

  • Lee, Young-Jun;Hwang, Min-Young;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.163-170
    • /
    • 2010
  • The objective of this study is to investigate the combustion characteristics of dual type of sintering burner as a function of design parameters using lab-scale sintering burner through experimental and numerical approaches. Combustion characteristics were evaluated by the radical method. The numerical model was verified as a temperature using R type of thermocouple at the bed surface. The effect of nozzle distance and angle were performed through the CFD analysis, and the comparison of burner types. As a results, dual type burner has more wider and uniform flame distribution than single type burner. Asymmetry and 45 degree angle condition have been suggested as an optimal condition for the ignition of the sintering bed surface.

Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid (점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.545-550
    • /
    • 2017
  • When the systolic blood pressure is high, intermittent turbulence in blood flow appears in the aorta and carotid artery with stenosis during the systolic period. The turbulent blood flow is difficult to analyze using the Newtonian turbulence model due to the viscous characteristics of blood flow. As the shear rate is increased, the blood viscosity decreases by the viscoelastic properties of blood and a drag reduction phenomenon occurs in turbulent blood flow. Therefore, a new non-Newtonian turbulent model is required for viscoelastic fluid and hemodynamics. The main aims of this study were to develop a non-Newtonian turbulence model using the drag reduction phenomenon based on the standard $k-{\varepsilon}$ turbulent model for a general non-Newtonian fluid. This was validated with the experimental data and has a good tendency for non-Newtonian turbulent flow. In addition, the computation time and resources were lower than those of the low Reynolds number turbulent model. A modified turbulent model was used to analyze various turbulent blood flows.

Design of Supersonic Wind Tunnel for Analysis of Flow over a Backward Facing Step with Slot Injection (슬롯 분사가 있는 후향계단 유동장 분석을 위한 초음속풍동 설계)

  • Kim, Ick-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.363-367
    • /
    • 2016
  • A test section of a supersonic wind tunnel was designed for the analysis of flow characteristics over a backward-facing step with Mach 1.0 slot injection in a supersonic flow of Mach 2.5. The cavity flow of a high-speed vehicle is very complex at supersonic speed, so it is necessary to do experiments using supersonic wind tunnels to verify numerical analysis methods. The previous 2D symmetrical nozzle was replaced with an asymmetrical nozzle. The inviscid nozzle contour was designed using Method of Characteristics (MOC), and the boundary layer thickness correction was reflected by experimental data from the wind tunnel. The results were compared with a CFD analysis. The PID control system was changed to be based on the change of tank pressure. This improved the control efficiency, and the run times of supersonic flow increased by about 1 second. The flow characteristics over a backward facing step with slot injection were visualized by a Schlieren device. This equipment will be used for an experimental study of the film cooling effectiveness over a cavity with various velocities, mass flows, and temperatures.

A study for roll damping performance of a platform supply vessel with or without bilge keel using CFD (전산유체역학을 이용한 해양작업지원선의 빌지킬 유무에 따른 횡동요 성능에 관한 연구)

  • Seok, Jun;Kim, Sung-Yong;Yang, Young-Jun;Jin, Song-Han;Park, Jong-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.791-798
    • /
    • 2016
  • In this study, numerical simulations on the effects of bilge keel on roll motion were conducted. The numerical simulations were performed on a 110 m class PSV using the commercial viscous flow analysis software Star-CCM+. Before conducting the study on the 110 m class PSV, an additional simulation of DTMB 5512 was performed and compared with the experimental results to validate the feasibility of the numerical simulation. In the simulation on PSV, a nondimensional damping coefficient was calculated using a free roll decay simulation, and the response amplitude operator (RAO) for the roll motion was calculated with a nondimensional damping coefficient at two conditions (with/without bilge keel).

Evaluation of Wind-Induced Vibration for Multiple Stacks Using Numerical Analysis (전산 해석을 이용한 다중연돌의 유체유발진동)

  • Yang, Kwangheok;Park, Chaegwan;Kim, Hyeonjoon;Baek, Songyoul;Park, Soontae
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • Wind-induced vibration is a phenomenon that a struture is oscillated due to wind force such as buffeting, vortex shedding wake and etc., which is one of important characteristics to be considered for design in case that stack has significant slenderness ratio or low natural frequency. International design standards of stack define several criteria for evaluating the suitability of stack design, which describe the required design considerations for each range of design parameters and provide the instruction to verify the stack design against wind-induced vibration simply. However, there is a limitation that they cannot provide quantitative information in case code requirement cannot be satisfied due to constraints of plant space or economical design. In order to overcome the limiation of code, integrated numerical analysis of computational fluid dynamics, harmonic analysis and finite element analysis were proposed to investigate wind-induced vibration for multiple stacks in actual plant. Simulated results of mutual wake interference effect between adjacent stacks were evaluated and compared to the criteria in international standards.

  • PDF

Numerical Investigation of the Effect of flow Passage Variation on the Projection Distance of the Foam Monitor (유로형상변경에 따른 폼 모니터 분사거리 변화의 수치적 해석)

  • Lee, Young-Hoon;RYU, Young-Chun;Seong, Jeong-Hyun;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.244-251
    • /
    • 2016
  • In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. A numerical investigation technique for fluid analysis of a foam monitor was developed for the prediction, comparison and validation of the actual injection performance. The foam monitor changes the flow pattern of fluid flow according to the shape, The fluid losses were calculated from the numerical investigation affecting the projection distance. The basic form of foam monitor was used as a designed shape in N. The modified model used the length increase model of the flow path, and straight line of the model. The inlet pressure was 6.5bar. The results showed that the length increase model of the flow path and straight line of the model in the nozzle projection distance had improved. The results comparing the error rates projection performance were well matched to the 7.43% obtained from the validity test of the analysis method.

Cavitation in Fuel Pump with 2D Cascade Modeling (2차원 Cascade에 의한 연료펌프의 공동발생 해석)

  • Quangnha, Thai;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.483-489
    • /
    • 2009
  • A CFD code was developed to investigate the inception of cavitation around impeller blades of centrifugal fuel pump using two dimensional cascade modeling. With the verification test for numerical validity of the developed code, the prediction of the onset of cavitation was made for the configuration of a newly designed KHP fuel pump. The calculation results show impeller design was free of cavitation if the pump operates within the operational temperature and rotational speed range. However, the cavitation would be relatively easy to occur at off design region of fuel pump where the rotational speed is higher than design limit. Specially, the onset of cavitation is sensitively dependent on the increase in fuel temperature while the decrease in temperature will reduce the possibility of cavitation inception in the pump.

Numerical Simulation of Free Surface Flow Using a Refined HRIC VOF Method (개선된 HRIC VOF 법에 의한 자유수면 유동해석)

  • Park, II-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.279-290
    • /
    • 2010
  • In this paper, a VOF method called RHRIC (refined high resolution intertace capturing) is introduced for solving the motion of the free surface and applied to the simulation of the advection of rigid interiaces of different shapes and a 20 dam-break problem, which are typical benchmark test cases. The numerical results for the interface advection cases are compared to the analytic solutions, while the available experimental data and other numerical results of various free surface methods for the dam-break problem are provided for the validation of the proposed VOF method. The same simulations were also carried out using the original HRIC scheme and a modified HRIC scheme called MHRIC for comparison. Although the RHRIC uses a simple order scheme, a basis of the original HRIC scheme, lower than the third-order ULTIMATE-QUICKEST used by the MHRIC, it provides an improved accuracy over the two previous HRIC methods.