• Title/Summary/Keyword: CEB-FIP Code

Search Result 58, Processing Time 0.026 seconds

Evaluation of Concrete Strength Effects on Tension Stiffening of CEB-FIP Model Code (콘크리트강도에 따른 CEB-FIP Model Code의 인장강성 평가)

  • Yang, Jun-Ho;Yum, Hwan-Seok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.635-640
    • /
    • 2000
  • This paper describes an experimental investigation on the influence of concrete strength on tension stiffening behavior. Total 6 direct tension specimens were tested with variation of concrete strengths such as 260, 620, and 820kgf/$\textrm{cm}^2$. These test results were compared with tension stiffening models of CEB-FIP Model Code. It was appeared that, as concrete strength was increasing, CEB-FIP models estimated much more tension stiffening than these test results. As the result, it would be said that the influence of concrete strength on tension stiffening was not properly taken account for in CEB-FIP model.

  • PDF

Comparison and Evaluation of Current Strut-and-Tie Design Provisions for Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 현행 스트럿-타이 설계기준에 대한 비교 및 평가)

  • Kim, Jin Woo;Hong, Sung-Gul;Lee, Young Hak;Kim, Heecheul;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • The current American Concrete Institute(ACI), Canadian Standard Associate(CSA) and CEB-FIP Model Code 2010 provisions on the shear strength of a simply supported deep beam suggest that deep beams should be designed using the strut-and-tie model. Although this is a useful methodology to design members in disturbed regions, the quality of the design is highly dependent on the truss model that designers create. However, Hong et al. derived the shear strength equations of reinforced concrete deep beams. This thesis investigates the validity of the current ACI, CSA and CEB-FIP code provisions on the shear strength of simply supported reinforced concrete deep beams by comparing them with the shear strength equations proposed by Hong et al. The comparison shows that all of these code provisions provide reasonable estimates on the shear strength of concrete deep beam members and the selection of an internal truss model plays an important role on the estimation of shear strength.

Effect of high temperatures on local bond-slip behavior between rebars and UHPC

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.163-178
    • /
    • 2022
  • This paper aimed to study the local bond-slip behavior between ultra-high-performance concrete (UHPC) and a reinforcing bar after exposure to high temperatures. A series of pull-out tests were carried out on cubic specimens of size 150×150×150 mm with deformed steel bar embedded for a fixed length of three times the diameter of the tested deformed bar. The experimental results of the bond stress-slip relationship were compared with the Euro-International Concrete Committee (CEB-Comite Euro-International du Beton)-International Federation for Prestressing (FIP-Federation Internationale de la Precontrainte) Model Code and with prediction models found in the literature. In addition, based on the test results, an empirical model of the bond stress-slip relationship was proposed. The evaluation and comparison results showed that the modified CEB-FIP Model code 2010 proposed by Aslani and Samali for the local bond stress-slip relationship for UHPC after exposure to high temperatures was more conservative. In contrast, for both room temperature and after exposure to high temperatures, the modified CEB-FIP Model Code 2010 local bond stress-slip model for UHPC proposed in this study was able to predict the test results with reasonable accuracy.

The Bond Behavior between Deformed bars and Recycled Fine Aggregate Concrete according to Bar Position. (철근 위치에 따른 이형철근과 순환잔골재 콘크리트의 부착거동)

  • You, Young-Chan;Jang, Yong-Heon;Lee, Min-Jung;Yun, Hyun-Do;Choi, Ki-Sun;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1089-1092
    • /
    • 2008
  • The bond behavior between concrete and reinforcement is a important requirement for reinforced concrete constructions. For practical application, it is very important to study bond behavior of reinforcing bars in recycled fine aggregate concrete. Therefore, pull-out test in order to investigate the bond behavior between recycled fine aggregate concrete and deformed bars was performed. Recycled fine aggregate concrete replacement ratios (i.e., 0% and 100%) and positions of deformed bars (i.e., vertical and horizontal position) were considered as variables in this study. Test results were compared with the bond strength requirement recommended by CEB-FIP code. Based on the test results, It was found that the bond strength between the recycled fine aggregate concrete and deformed bars were influenced by both recycled fine aggregate concrete replacement ratios and positions of deformed bars. The reduction of bonded area at the soffit of horizontal reinforcement caused by concrete bleeding was observed in H type specimen. So, Only V type and HB specimen satisfied the bond strength requirement recommended by CEB-FIP code.

  • PDF

An Evaluation of Tensile Design Criteria of Cast-In-Place Anchor by Numerical Analysis (수치해석에 의한 직매형 앵커기초의 인장설계기준 평가)

  • Suh Yong-Pyo;Jang Jung-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.303-309
    • /
    • 2005
  • Numerical analysis is carried out to identify the appropriateness of the design codes that is available for the tensile design of fastening system at Nuclear Power Plant (NPP) in this study. This study is intended for the cast-in-place anchor that is widely used for the fastening of equipment in Korean NPPs. The microplane model and the elastic-perfectly plastic model are employed for the quasi-brittle material like concrete and for the ductile material like anchor bolt as constitutive model for numerical analysis and smeared crack model is employed to simulate the clack and damage phenomena. The developed numerical model is verified on a basis of the various test data of cast-in-place anchor. The appropriateness of both ACI 349 Code and CEB-FIP Code is evaluated for the tensile design of cast-in-place anchor and it is proved that both design codes give a conservative results for real tensile capacity of cast-in-place anchor.

The Prediction of Concrete Creep

  • Shon, Howoong;Kim, Youngkyung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.277-282
    • /
    • 2004
  • Creep deformation of concrete is often responsible for excessive deflection at loads which can compromise the performance of elements within structures. Hence, the prediction of the magnitude and rate of creep strain is an important requirement of the design process and management of structures. Although laboratory tests may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically based national design code models are relied upon to predict the magnitude of creep strain.This paper reviews the accuracy of creep predictions yielded by eight commonly used international "code type" models, all of which do not consider the same material parameters and yield a range of predicted strains, when compared with actual strains measured on a range of concretes in seventeen different investigations. The models assessed are the: SABS 0100 (1992), BS 8110 (1985), ACI 209 (1992), AS 3600 (1998), CEB-FIP (1970, 1978 and 1990) and the RILEM Model B3 (1995). The RILEM Model B3 (1995) and CEB-FIP (1978) were found to be the most and least accurate, respectively.

  • PDF

Effect of a Time Dependent Concrete Modulus of Elasticity on Prestress Losses in Bridge Girders

  • Singh, Brahama P.;Yazdani, Nur;Ramirez, Guillermo
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2013
  • Prestress losses assumed for bridge girder design and deflection analyses are dependent on the concrete modulus of elasticity (MOE). Most design specifications, such as the American Association of State Highways and Transportation Officials (AASHTO) bridge specifications, contain a constant value for the MOE based on the unit weight of concrete and the concrete compressive strength at 28 days. It has been shown in the past that that the concrete MOE varies with the age of concrete. The purpose of this study was to evaluate the effect of a time-dependent and variable MOE on the prestress losses assumed for bridge girder design. For this purpose, three different variable MOE models from the literature were investigated: Dischinger (Der Bauingenieur 47/48(20):563-572, 1939a; Der Bauingenieur 5/6(20):53-63, 1939b; Der Bauingenieur, 21/22(20):286-437, 1939c), American Concrete Institute (ACI) 209 (Tech. Rep. ACI 209R-92, 1992) and CEB-FIP (CEB-FIP Model Code, 2010). A typical bridge layout for the Dallas, Texas, USA, area was assumed herein. A prestressed concrete beam design and analysis program from the Texas Department of Transportation (TxDOT) was utilized to determine the prestress losses. The values of the time dependent MOE and also specific prestress losses from each model were compared. The MOE predictions based on the ACI and the CEB-FIP models were close to each other; in long-term, they approach the constant AASHTO value. Dischinger's model provides for higher MOE values. The elastic shortening and the long term losses from the variable MOE models are lower than that using a constant MOE up to deck casting time. In long term, the variable MOE-based losses approach that from the constant MOE predictions. The Dischinger model would result in more conservative girder design while the ACI and the CEB-FIP models would result in designs more consistent with the AASHTO approach.

Evaluation of Crack Estimation Equation for the Reinforced Concrete Tension Member (철근콘크리트 인장부재의 균열 산정식 평가)

  • Park, Chan-Wook;Noh, Sam-Young;Shin, Eun-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.197-208
    • /
    • 2009
  • The purpose of this research is the evaluation of the estimation equation of "CEP-FIP Model Code 1990(1991)", recently included in the domestic "Concrete Structure Design Code(2007)" in consideration of the concrete strength. As evaluation tools, crack element model applied a detailed bond-slip model as well as crack width obtained from experimental results by earlier researches. The crack element model is verified through the comparison with experimental results. The important variables in the estimation equation for the crack width in CEP-FIP Model Code 1990 are the tension stiffening effect and mean bond stress proposed in the paper to be improved in consideration of the concrete strength.

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

Evaluation of Crack Width Based on the Actual Bond Stress-Slip Relationship in Structural Concrete Members (부착응력-미끌림 관계에 기반한 철근콘크리트 부재의 균열폭 산정)

  • Kim, Woo;Lee, Ki-Yeol;Kim, Jang-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.91-100
    • /
    • 2006
  • This paper presents an analytical model for evaluation of crack widths in structural concrete members. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 are employed in this study together with the assumption of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test specimens available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.