DOI QR코드

DOI QR Code

Comparison and Evaluation of Current Strut-and-Tie Design Provisions for Reinforced Concrete Deep Beams

철근콘크리트 깊은 보의 현행 스트럿-타이 설계기준에 대한 비교 및 평가

  • Kim, Jin Woo (Department of Architectural Engineering, Kyung-Hee Univ.) ;
  • Hong, Sung-Gul (Department of Architecture, Seoul National Univ.) ;
  • Lee, Young Hak (Department of Architectural Engineering, Kyung-Hee Univ.) ;
  • Kim, Heecheul (Department of Architectural Engineering, Kyung-Hee Univ.) ;
  • Kim, Dae-Jin (Department of Architectural Engineering, Kyung-Hee Univ.)
  • Received : 2014.07.10
  • Accepted : 2014.08.02
  • Published : 2014.08.30

Abstract

The current American Concrete Institute(ACI), Canadian Standard Associate(CSA) and CEB-FIP Model Code 2010 provisions on the shear strength of a simply supported deep beam suggest that deep beams should be designed using the strut-and-tie model. Although this is a useful methodology to design members in disturbed regions, the quality of the design is highly dependent on the truss model that designers create. However, Hong et al. derived the shear strength equations of reinforced concrete deep beams. This thesis investigates the validity of the current ACI, CSA and CEB-FIP code provisions on the shear strength of simply supported reinforced concrete deep beams by comparing them with the shear strength equations proposed by Hong et al. The comparison shows that all of these code provisions provide reasonable estimates on the shear strength of concrete deep beam members and the selection of an internal truss model plays an important role on the estimation of shear strength.

콘크리트 깊은 보의 전단강도 산정을 위해 현행 미국콘크리트학회(ACI) 및 캐나다표준규격협회(CSA), 유럽콘크리트위원회(CEB-FIP)의 설계기준은 스트럿-타이 모델을 이용할 것을 제안하고 있지만 설계의 품질이 설계자가 구성한 트러스 모델 적합성에 크게 좌우된다는 특징을 가지고 있다. 따라서 본 논문에서는 내부 트러스 모델에 따른 현행 ACI, CSA 및 CEB-FIP의 콘크리트 깊은 보 설계기준의 타당성을 홍성걸 등에 의해 제안된 콘크리트 소성학에 근거한 전단강도식의 예측치와 비교함으로써 평가한다. 비교 결과 ACI, CSA 및 CEB-FIP의 스트럿-타이 모델에 의해 설계된 깊은 보의 경우 내부 트러스 모델이 전단강도 예측에 중요한 영향을 미치는 것으로 나타났으며 CEB-FIP의 경우 가장 높은 스트럿 강도 예측치를 보였다.

Keywords

References

  1. ACI Committee 318 (2011) Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills, Michigan, p.465.
  2. CSA A23.3-04 (2004) Design of concrete structures, Canadian Standards Association, Muk -tha Tumkur, p.214.
  3. EN 1992-1-1:2004 (2004) Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, British Standards Insti- tution, London, UK, p.230.
  4. Eom, T.-S., Park, H.-G. (2010) Secant Stiffness Method for Inelastic Design of Strut-and-Tie Model, ACI Structural Journal, 107(6), pp.689-698.
  5. Hong S.-G., Ha T. (2012) Effective Capacity of Diagonal Strut for Shear Strength of Reinforced Concrete Beams Without Shear Reinforcement, ACI Structural Journal, 109(2), pp.139-148.
  6. Hong, S.-G., Kim D.-J., Kim S.-Y., Kim Hong N. (2002) Shear Strength of Reinforced Concrete Deep Beams with End Anchorage Failure, ACI Structural Journal, 99(1), pp.12-22.
  7. Kim, S.-S. (2008) Design of Reinforced Concrete Structures, 4th Edition, Munundang, p.592.
  8. Nielsen, M.P. (1998) Limit Analysis and Con-crete Plasticity, CRC press LLC, p.908.
  9. Tjhin, T.N., Kuchma, D.A. (2007) Integrated Analysis and Design Tool for the Strut-and-Tie Method, Engineering Structures, 29(11), pp.3042-3052. https://doi.org/10.1016/j.engstruct.2007.01.032
  10. Yun, Y.M. (2006) Strength of Two-dimensional Nodal Zones in Strut-tie, Journal of Structural Engineering, ASCE, 132(11), pp.1764-1783. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1764)