• Title/Summary/Keyword: CCM-DCM operation

Search Result 17, Processing Time 0.02 seconds

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2005
  • In this paper, a DC and small-signal AC modeling for the active-clamp, ful1-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a dc counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM(Continuous conduction mode) boost and DCM(Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control (입력전압을 감지하지 않는 전류연속/임계동작모드 Active Power Factor Correction Circuit)

  • Roh, Yong-Seong;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.151-161
    • /
    • 2013
  • An active power factor correction (PFC) circuit is presented which employs a newly proposed input voltage sensor-less control technique operated in continuous conduction mode (CCM) and critical conduction mode (CRM). The conventional PFC circuit with input voltage sensor-less control technique degrades the power factor (PF) under the light load condition due to DCM operation. In the proposed PFC circuit, the switching frequency is basically 70KHz in CCM operation. In light load condition, however, the PFC circuit operates in CRM and the switching frequency is increased up to 200KHz. So CCM/CRM operation of the PFC circuit alleviates the decreasing of the PF in light load condition. The proposed PFC controller IC has been implemented in a $0.35{\mu}m$ BCDMOS process and a 240W PFC prototype is built. Experimental results shows the PF of the proposed PFC circuit is improved up to 10% from the one employing the conventional CCM/DCM dual mode control technique. Also, the PF is improved up to 4% in the light load condition of the IEC 61000-3-2 Class D specifications.

High Efficiency Design Considerations for the Self-Driven Synchronous Rectified Phase-Shifted Full-Bridge Converters of Server Power Systems

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.634-643
    • /
    • 2015
  • This paper presents a high frequency design approach for improving efficiency over a wide load range in the self-driven phase-shifted full-bridge converters for server power systems. In the proposed approach, a detailed ZVS analysis of the lagging leg switches in both the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM) is presented. The optimum dead time and the determination of the appropriate operation mode are given for high efficiency according to the load conditions. Finally, the optimum operation conditions are defined to achieve a high-efficiency. A laboratory prototype operating at 80 kHz, rated 1 kW (12 V-83.3 A), is built to verify proposed theoretical analysis and evaluations. The experimental results show that the maximum efficiency is achieved as 95% and 83.5% at full load and 5% load conditions, respectively.

High Efficiency Triple Mode Boost DC-DC Converter Using Pulse-Width Modulation (펄스폭 변조를 이용한 고효율 삼중 모드 부스트 변환기)

  • Lee, Seunghyeong;Han, Sangwoo;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • This paper presents a high efficiency, PSM/DCM/CCM triple mode boost DC-DC converter for mobile application. This device operates at Pulse-Skipping Mode(PSM) when it enters light load, and otherwise operate the operating frequency of 1.4MHz with Pulse-Width Modulation(PWM) mode. Especially in order to improve the efficiency during the Discontinuous-Conduction Mode(DCM) operation period, the reverse current prevention circuit and oscillations caused by the inductor and the parasitic capacitor to prevent the Ringing killer circuit is added. The input voltage of the boost converter ranges from 2.5V ~ 4.2V and it generates the output of 4.8V. The measurement results show that the boost converter provides a peak efficiency of 92% on CCM and 87% on DCM. And an efficiency-improving PWM operation raises the efficiency drop because of transition from PWM to PFM. The converter has been fabricated with a 0.18um Dongbu BCDMOS technology.

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.610-614
    • /
    • 2004
  • Recently, an active-clamp, full-bridge boost converter has been actively studied for high-power applications such as power factor correction and battery discharger. However, DC and AC modeling for this converter has not conquered. In this paper, a DC and small-signal AC modeling for the active-clamp, full-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a do counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM (Continuous conduction mode) boost and DCM (Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

  • PDF

Operation Analysis of th Watkins-Johnson Converter (Watkins-Johnson 컨버터의 동작특성 해석)

  • 안태영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.85-93
    • /
    • 1997
  • This paper analyzes the steady-state and dynamic characteristics of the watkings-johnson converter. the major contributions of this paper includ identification of the following characteristics unique to the watkins-johnson converter: (1) The output voltage of the converter is nearly constant at the continous conduction mode (CCM), and at discontinousou conduction mode (DCM) it decreses linerly as the output curretn increases. (2) The control-to-output transfer function is a second-order one with a left-half-plane (LHP) zero determined by the combination of the output capacitor and equivalent series resistor of the converter. This LHP zero signinificantly improves the stability of the converter. (3) The control-to-output transfer function reduces to a first-order one, as the converter moves from CCM to DCM. (4) The parastic resistance of the inductor does not cause any significant influence on poles and zeros of the transfer function.

  • PDF

Investigating Buck DC-DC Converter Operation in Different Operational Modes and Obtaining the Minimum Output Voltage Ripple Considering Filter Size

  • Babaei, Ebrahim;Mahmoodieh, Mir Esmaeel Seyed;Sabah, Mehran
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.793-800
    • /
    • 2011
  • This paper investigates the operational modes of buck dc-dc converters and their energy transmission methods. The operational modes of such converters are classified in two types, discontinuous conduction mode (DCM) and continuous conduction mode (CCM). In this paper, the critical inductance relation of DCM and CCM is determined. The equations of the output voltage ripple (OVR) for each mode are obtained for a specific input voltage and load resistance range. The maximum output voltage ripple (MOVR) is also obtained for each mode. The filter size is decreased and the minimum required inductance value is calculated to guarantee the minimization of the MOVR. The experimental and simulation results in PSCAD/EMTDC prove the correctness of the presented theoretical concepts.

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.