• Title/Summary/Keyword: CCD Color Image

Search Result 140, Processing Time 0.041 seconds

Get Color Image That Using Monochrome CCD Camera and Color Filter, and Color Revision (Monochrome-Camera와 Color-Filter를 이용한 Color Image획득과 색상보정)

  • Kwon O. S.;Park Y. C.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.329-334
    • /
    • 2005
  • Most people are using a Color-CCD-Camera in other to acquire a color image. But we are getting a color image with the Monochrome-CCD-Camera equipped for Rotation-Color-Filter in front of the camera lens. The Monochrome CCD Camera has some advantages such as the low price. In addition Rotation-Color-Filter's design is very simple. So we can make this structure easily and economically. In this paper, we described how to make a color image from Monocrome-Camera and correcting color well.

  • PDF

Color image restoration for a single-CCD color camcorder system (단일 CCD 컬러 캠코더 시스템을 위한 컬러 영상복원)

  • Na, Woon;Park, Yong-Cheol;Paik, Joon-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1398-1415
    • /
    • 1996
  • Instead of using three charge-coupled devices (CCDs) for the corresponding color channels, most consumer's most consummer's color macmorders reconstruct color images by using only one CCD with a color filter array (CFA), which periodically samples different color signals. By this reson the resulting image cannot produce the full resolution of the input image. More sepecifically, a single-CCD color camcorder reconstructs red, greed, and blue color channels from a color filter array followed by a CCD. During the reconstruction process, color cross-talk among channels (interchannel distortion) and eriodically space-verying blur (intrachannel distortion) occur. The proposed restoration system reduces distortions due to interchannel interference, and then restores each color channel by removing the corresponding intrachannel distortion. Experimental results show that the proposedsystem provides the improved image in oth objective and subjective senses. A major advantage of the proposed system is feasible to real-time image improvement because it can be implemented by a finite impulse response (FIR) filter structure.

  • PDF

Emotion Recognition by CCD Color Image (CCD 컬러영상에 의한 감성인식)

  • Lee, Sang-Yoon;Joo, Young-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • In this paper, we propose the technique for recognizing the human s emotion by using the CCD color image. To do this, we first get the face image by using skin-color from the original color image acquired by the CCD camera. And we propose the method for finding man s feature points(eyebrows, eye, nose, mouse) from the face image and the geometrical method for recognizing human s emotion (surprise, anger, happiness, sadness) from the structural correlation of man s feature feints. The proposed method in this paper recognize the human s emotion by learning the neural network. Finally, we have proven the effectiveness of the Proposed method through the experimentation.

Emotion Recognition by CCD Color Image

  • Joo, Young-Hoon;Lee, Sang-Yoon;Oh, Jae-Heung;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.2-138
    • /
    • 2001
  • This paper proposes the technique for recognizing the human´s emotion by using the CCD color image. To do this, we first acquire the color image from the CCD camera. And then propose the method for recognizing the expressing to be represented the structural correlation of man´s feature points(eyebrows, eye, nose, mouse), In the proposed method. Human´s emotion is divided into four emotion(surprise, anger, happiness, sadness). Finally, we have proven the effectiveness of the proposed method through the experimentation.

  • PDF

Facial Region Tracking by Infra-red and CCD Color Image (CCD 컬러 영상과 적외선 영상을 이용한 얼굴 영역 검출)

  • Yoon, T.H.;Kim, K.S.;Han, M.H.;Shin, S.W.;Kim, I.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.60-62
    • /
    • 2005
  • In this study, the automatic tracking algorithm tracing a human face is proposed by using YCbCr color coordinated information and its thermal properties expressed in terms of thermal indexes in an infra-red image. The facial candidates are separately estimated in CbCr color and infra-red domain, respectively with applying the morphological image processing operations and the geometrical shape measures for fitting the elliptical features of a human face. The identification of a true face is accomplished by logical 'AND' operation between the refined image in CbCr color and infra-red domain.

  • PDF

Facial Region Tracking by Utilizing Infra-Red and CCD Color Image (CCD 컬러 영상과 적외선 영상을 이용한 얼굴 영역 검출)

  • Kim K. S.;Lee J. W.;Yoon T. H.;Han M. H.;Shin S. W.;Kim I. Y.;Song C. G.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.577-579
    • /
    • 2005
  • In this study, the automatic tracking algorithm tracing a human face is proposed by using YCbCr color coordinated information and its thermal properties expressed in terms of thermal indexes in an infra-red image. The facial candidates are separately estimated in CbCr color and infra-red domain, respectively with applying the morphological image processing operations and the geometrical shape measures for fitting the elliptical features of a human face. The identification of a true face is accomplished by logical 'AND' operation between the refined image in CbCr color and infra-red domain.

Edge-Adaptive Color Interpolation for CCD Image Sensor

  • Heo, Bong-Su;Hong, Hun-Seop;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The color interpolation scheme can play an important role in overcoming the physical limitation of the CCD image sensor and in increasing the resolution of color signals, while most conventional approaches result in blurred edges and false color artifacts. In this paper, we have proposed an improved edge-adaptive color interpolation scheme for a progressive scan CCD image sensor with RGB color filter array The edge indicator function proposed utilizes not only the within-channel correlation but also the cross-channel correlation, and reflects the edge characteristics of an image adaptively. The color components unavailable for at each channel are interpolated along the edge direction, not across the edges, so that aliasing artifacts are supressed. Furthermore, we eliminated false color artifacts resulting from the color image formation model in the edge-adaptive color interpolation scheme by adopting the switching algorithm based on the color edge detection. Simulation results of the proposed algorithm indicate that the improved edge-adaptive color interpolation scheme produces quantitatively better and visually more pleasing results than conventional approaches.

Automatic testing system for a color image (칼라화상 검사 자동화시스템)

  • 구영모;이노성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.49
    • /
    • pp.135-142
    • /
    • 1999
  • The objective of this paper is to provide an automatic color image testing system capable of synthetically testing a color element like a color tone and a luminance for a color image displayed on the screen, using a CCD camera and a microprocess. The system consists of a CCD camera, a line conveyor, a camera driving part, a remocon, a remote sensing part, a display and a PC including a color vision board and a CPU board. By applying the system to a process, reliability for a testing result can be improved and the absolute criterion to judge a part can be made.

  • PDF

High Fidelity Color Capturing of CCD-Camera System by Using of Spectral Sensitivity Model (스펙트럼 특성 모델을 이용한 CCD카메라 시스템의 고성능 칼라 Capturing)

  • 이상진;신윤철;김일도;김문철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1751-1754
    • /
    • 2003
  • CCD Camera System으로 capture 한 image를 표준 display장치로 재현할 때 capture 할 당시의 원 피사체의 모습을 그대로 재현하여야만 한다. 그러나 일반 consumer 용 camera system의 CCD channel spectral sensitivity 특성이 인간의 spectral sensitivity(1(λ), m(λ), 5(λ)) 특성과 일치하지 않고, linear transform의 관계도 성립하지 않음으로써 capturing시 근본적인 color error가 발생하게 된다. 기존의 CCD Camera System 에서는 CCD sensor 의 color 정보와 display 장치의 color 정보와의 단순한 산술적인 관계로 color를 재구성하는 방법을 사용하고 있어 원 피사체의 color 를 그대로 재현할 수가 없다. 본 논문에서 제시하는 알고리즘은 CCD 의 channel spectral sensitivity특성 과 CIE-color matching function과의 관계를 고려하여 color를 재구성함으로써 color error를 줄이도록 하였다 제시된 알고리즘의 color error를 검증하기 위하여 물체의 고유반사율을 알고 있는 AGFA IT8.7-2 test chart(283 spectra), Dupont Paint Chips(120 spectra), Mcbeth Color Checker(64 spectra) 및 Natural Objects(170 spectra) 등 다양한 objects spectra(637 spectra) [1][2]를 이용하여 기존 방법의 알고리즘과 비교하여 보았다.

  • PDF

Emotion Recognition by Vision System (비젼에 의한 감성인식)

  • 이상윤;오재흥;주영훈;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.203-207
    • /
    • 2001
  • In this Paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using CCD color image. To do this, we first acquire the color image from the CCD camera, and then propose the method for recognizing the expression to be represented the structural correlation of man's feature Points(eyebrows, eye, nose, mouse) It is central technology that the Process of extract, separate and recognize correct data in the image. for representation is expressed by structural corelation of human's feature Points In the Proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Had separated complexion area using color-difference of color space by method that have separated background and human's face toughly to change such as external illumination in this paper. For this, we propose an algorithm to extract four feature Points from the face image acquired by the color CCD camera and find normalization face picture and some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector. Finally, we show the Practical application possibility of the proposed method.

  • PDF