• Title/Summary/Keyword: CBC Mode

Search Result 49, Processing Time 0.028 seconds

Counter Chain: A New Block Cipher Mode of Operation

  • El-Semary, Aly Mohamed;Azim, Mohamed Mostafa A.
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.266-279
    • /
    • 2015
  • In this paper, we propose a novel block cipher mode of operation, which is known as the counter chain (CC) mode. The proposed CC mode integrates the cipher block chaining (CBC) block cipher mode of operation with the counter (CTR) mode in a consistent fashion. In the CC mode, the confidentiality and authenticity of data are assured by the CBC mode, while speed is achieved through the CTR mode. The proposed mode of operation overcomes the parallelization deficiency of the CBC mode and the chaining dependency of the counter mode. Experimental results indicate that the proposed CC mode achieves the encryption speed of the CTR mode, which is exceptionally faster than the encryption speed of the CBC mode. Moreover, our proposed CC mode provides better security over the CBC mode. In summary, the proposed CC block cipher mode of operation takes the advantages of both the Counter mode and the CBC mode, while avoiding their shortcomings.

A Controllable Parallel CBC Block Cipher Mode of Operation

  • Ke Yuan;Keke Duanmu;Jian Ge;Bingcai Zhou;Chunfu Jia
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.24-37
    • /
    • 2024
  • To address the requirement for high-speed encryption of large amounts of data, this study improves the widely adopted cipher block chaining (CBC) mode and proposes a controllable parallel cipher block chaining (CPCBC) block cipher mode of operation. The mode consists of two phases: extension and parallel encryption. In the extension phase, the degree of parallelism n is determined as needed. In the parallel encryption phase, n cipher blocks generated in the expansion phase are used as the initialization vectors to open n parallel encryption chains for parallel encryption. The security analysis demonstrates that CPCBC mode can enhance the resistance to byte-flipping attacks and padding oracle attacks if parallelism n is kept secret. Security has been improved when compared to the traditional CBC mode. Performance analysis reveals that this scheme has an almost linear acceleration ratio in the case of encrypting a large amount of data. Compared with the conventional CBC mode, the encryption speed is significantly faster.

CPA and Deep Learning-Based IV Analysis on AES-CBC Mode (AES-CBC 모드에 대한 CPA 및 딥러닝 기반 IV 분석 방안)

  • Hye-Bin Noh;Ju-Hwan Kim;Seong-Hyun An;Chang-Bae Seo;Han-Eul Ryu;Dong-Guk Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.833-840
    • /
    • 2024
  • Existing side-channel analysis studies have mostly been analyzed only on block ciphers without considering the operation mode. However, establishing a methodology of side-channel analysis on operation mode is necessary because information for performing analysis varies depending on that. This paper proposes a methodology of correlation power analysis (CPA) on an operation mode CBC in a software target. The first round SubBytes layer output is generally used as a sensitive hypothetical intermediate value of an encryption algorithm AES (advanced encryption standard); however, the adversary should acquire the plaintext and ciphertext to calculate the input of AES in CBC mode. We propose an intermediate value calculated only by ciphertext. Besides, the initial vector (IV) could be treated as closed information in practice, although it is theoretically not secret. The adversary cannot decrypt the first block of plaintext without IV even if he analyzes the secret key. We propose a deep learning-based IV analysis method in a non-profiled environment.

Optical CBC Block Encryption Method using Free Space Parallel Processing of XOR Operations (XOR 연산의 자유 공간 병렬 처리를 이용한 광학적 CBC 블록 암호화 기법)

  • Gil, Sang Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2013
  • In this paper, we propose a modified optical CBC(Cipher Block Chaining) encryption method using optical XOR logic operations. The proposed method is optically implemented by using dual encoding and a free-space interconnected optical logic gate technique in order to process XOR operations in parallel. Also, we suggest a CBC encryption/decryption optical module which can be fabricated with simple optical architecture. The proposed method makes it possible to encrypt and decrypt vast two-dimensional data very quickly due to the fast optical parallel processing property, and provides more security strength than the conventional electronic CBC algorithm because of the longer security key with the two-dimensional array. Computer simulations show that the proposed method is very effective in CBC encryption processing and can be applied to even ECB(Electronic Code Book) mode and CFB(Cipher Feedback Block) mode.

Padding Oracle Attack on Block Cipher with CBC|CBC-Double Mode of Operation using the BOZ-PAD (BOZ-PAD 방법을 사용하는 블록암호 기반 CBC|CBC 이중 모드에 대한 패딩 오라클 공격)

  • Hwang, Seongjin;Lee, Changhoon
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • In the various application environments on the internet, we use verified cipher algorithm to protect personal information of electronic commerce or application environments. Even so, if an application method isn't proper, the information you want to keep can be intercepted. This thesis studied about result of Padding Oracle Attack, an application environment which apply CBC|CBC operational mode based on block cipher and BOZ padding method.

A Design of Authentication/Security Processor IP for Wireless USB (무선 USB 인증/보안용 프로세서 IP 설계)

  • Yang, Hyun-Chang;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2031-2038
    • /
    • 2008
  • A small-area and high-speed authentication/security processor (WUSB_Sec) IP is designed, which performs the 4-way handshake protocol for authentication between host and device, and data encryption/decryption of wireless USB system. The PRF-256 and PRF-64 are implemented by CCM (Counter mode with CBC-MAC) operation, and the CCM is designed with two AES (Advanced Encryption Standard) encryption coles working concurrently for parallel processing of CBC mode and CTR mode operations. The AES core that is an essential block of the WUSB_Sec processor is designed by applying composite field arithmetic on AF$(((2^2)^2)^2)$. Also, S-Box sharing between SubByte block and key scheduler block reduces the gate count by 10%. The designed WUSB_Sec processor has 25,000 gates and the estimated throughput rate is about 480Mbps at 120MHz clock frequency.

A Design of AES-based CCMP core for IEEE 802.11i Wireless LAN Security (IEEE 802.11i 무선 랜 보안을 위한 AES 기반 CCMP 코어 설계)

  • Hwang Seok-Ki;Kim Jong-Whan;Shin Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.640-647
    • /
    • 2006
  • This paper describes a design of AES-based CCMP(Counter mode with CBC-MAC Protocol) core for IEEE 802.11i wireless LAN security. To maximize the performance of CCMP core, two AES cores are used, one is the counter mode for data confidentiality and the other is the CBC node for authentication and data integrity. The S-box that requires the largest hardware in ARS core is implemented using composite field arithmetic, and the gate count is reduced by about 27% compared with conventional LUT(Lookup Table)-based design. The CCMP core was verified using Excalibur SoC kit, and a MPW chip is fabricated using a 0.35-um CMOS standard cell technology. The test results show that all the function of the fabricated chip works correctly. The CCMP processor has 17,000 gates, and the estimated throughput is about 353-Mbps at 116-MHz@3.3V, satisfying 54-Mbps data rate of the IEEE 802.11a and 802.11g specifications.

Safety Comparison Analysis Against Known/Chosen Plaintext Attack of RBF (Random Block Feedback) Mode to Other Block Cipher Modes of Operation (블록 암호 연산 모드 RBF(Random Block Feedback)의 알려진/선택 평문 공격에 대한 안전성 비교 분석)

  • Kim, Yoonjeong;Yi, Kang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.317-322
    • /
    • 2014
  • Data security and integrity is a critical issue in data transmission over wired/wireless links. A large amount of data is encrypted before transmission, by block cipher using mode of operation. RBF mode is a block cipher mode of operation which uses random characteristics. In this paper, we analyze the safety against known plaintext attack and chosen plaintext attack of RBF mode compared to the traditional modes. According to the analysis, RBF mode is known to be secure while the traditional modes are not secure against them.

Design and Implementation of IEEE 802.11i MAC Layer (IEEE 802.11i MAC Layer 설계 및 구현)

  • Hong, Chang-Ki;Jeong, Yong-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.640-647
    • /
    • 2009
  • IEEE 802.11i is an amendment to the original IEEE 802.11/b,a,g standard specifying security mechanism by stipulating RSNA for tighter security. The RSNA uses TKIP(Temporal Key Integrity Protocol) and CCMP(Counter with CBC-MAC Protocol) instead of old-fashioned WEP(Wired Equivalent Privacy) for data encryption. This paper describes a design of a communication security engine for IEEE 802.11i MAC layer. The design includes WEP and TKIP modules based on the RC4 encryption algorithm, and CCMP module based on the AES encryption algorism. The WEP module suffices for compatibility with the IEEE 802.11 b,a,g MAC layer. The CCMP module has about 816.7Mbps throughput at 134MHz, hence it satisfies maximum 600Mbps data rate described in the IEEE 802.11n specifications. We propose a pipelined AES-CCMP cipher core architecture, which has lower hardware cost than existing AES cores, because CBC mode and CTR mode operate at the same time.

Analysis of Padding Oracle Attack Possibility about Application Environment; SRTP, MIKEY, CMS, IPSec, TLS, IPTV (SRTP, MIKEY, CMS, IPSec, TLS, IPTV에 대한 패딩 오라클 공격 가능성 분석)

  • Hwang, Seongjin;Park, Myungseo;Moon, Dukjae;Kang, HyungChul;Kim, Jongsung;Lee, Changhoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • In the various application environments on the internet, we use verified cipher algorithm to protect personal information. Even so, if an application method isn't proper, the information you want to keep can be intercepted. One of the representative examples of it is a PADDING ORACLE ATTACK. This thesis studied about STRP, MIKEY, CMS, IPSec, TLS, IPTV, an application environment which apply CBC operational mode based on block cipher and CBC padding method, and about whether we can attack against the Padding Oracle Attack as well as the vulnerable points.