• Title/Summary/Keyword: CAM(Computer-Aided Manufacturing)

Search Result 238, Processing Time 0.028 seconds

Real Time Scheduling for Computer-Aided Manufacturing ( CAM ) Systems with Instance-Based Rules (CAM에서의 사례의존규칙을 이용한 실시간 일정계획)

  • Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.63-74
    • /
    • 1991
  • An expert scheduling system on real time basis for computer-aided manufacturing systems has been developed. In developing expert scheduling system, the most time-consuming job is to obtain rules from expert schedulers. An efficient process of obtaining rules directly form the schedules produced by expert schedulers is proposed. By the process, a set of complete and minimal set of rules is obtained. During a real time scheduling, when given information on possible values of elements, the rules produce possible values of decision elements, where logical explanations of the result may be offered in terms of chaining rules. The learning and scheduling processes have been simulated with an automated manufacturing line engaged in the production of circuit boards.

  • PDF

Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method

  • Jeong, Yoo-Geum;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2018
  • PURPOSE. To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. MATERIALS AND METHODS. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). RESULTS. The RMS value ($152{\pm}52{\mu}m$) of the model manufactured by the milling method was significantly higher than the RMS value ($52{\pm}9{\mu}m$) of the model produced by the 3D printing method. CONCLUSION. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

Fabrication of complete denture using conventional method and monolithic digital denture system: a case report (전통적 제작법과 모놀리식(monolithic) 디지털 의치 시스템을 이용한 상·하악 총의치 동시 수복 증례)

  • Young-Baek Park;Ga-Hyun Lee;Young-Gyun Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.1
    • /
    • pp.6-19
    • /
    • 2024
  • With the advancement of Computer-Aided Design/Computer-Aided Manufacturing (CAD-CAM) technology, fabrication of dentures using this technology has gained popularity. As one of CAD-CAM technologies, digital complete denture system has been introduced, which fabricates complete dentures using subtractive manufacturing of monolithic block containing both the color of a denture base and an artificial tooth. In this case, two pairs of upper and lower dentures were fabricated for two patients. Two pairs of complete dentures were fabricated for a 74-year-old male and a 73-year-old female respectively by conventional denture fabrication method and digital method of milling. To obtain a digital complete denture, monolithic block (Ivotion, Ivoclar Vivadent, Schaan, Liechtenstein) was chosen for the materials to fabricate the digital complete dentures. An individual tray was designed using CAD software and manufactured by 3D printing technique. The final impression and interocclusal relationship were recorded using the fabricated individual tray. The final impression was scanned, and the complete denture design and try-in denture were 3D printed using CAD-CAM software. Subsequently, the monolithic block was milled, and the final dentures were fabricated and tried on patients. Previously mentioned two patient cases compared and analyzed stability, fit, speaking, mastication, aesthetics, and patient satisfaction of two pairs of dentures: one fabricated using CAD-CAM system and the other using traditional methods. This was performed to evaluate and report the findings from both denture-making approaches.

Functional and esthetic improvement through reconstruction of anterior guidance using the modified Dahl principle and copy-milled technique of CAD/CAM system: A case report (적절한 전방 유도 재현을 위해 수정된 Dahl 원리 및 CAD/CAM 복제 기법을 이용하여 전치부의 기능 및 심미성을 개선한 보철 수복 증례)

  • Kim, Sung-Ho;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.160-170
    • /
    • 2019
  • The anterior guidance is one of the important factors in prosthodontic treatment of anterior teeth. The lingual surface shape of anterior restorations is so critical that small errors of treatment procedure can cause discomfort of the patient and disharmony of the dentition. If the anterior restorations are achieved harmonious anterior guidance through the fabrication and adjustment of provisional restorations, it is important to accurately reproduce the lingual surface shape of provisional restorations as the final prosthesis. In this case report, it was used the modified Dahl principle and copy-milled technique of computer-aided design/computer-aided manufacturing (CAD/CAM) system for systematic diagnosis and treatment. Therefore, we tried to reconstruct the restoration shape more precisely by setting the appropriate anterior guidance and superimposing the digital image of the abutment teeth and the provisional restorations. Thus, by promoting functional and esthetic recovery, this case report demonstrates satisfying results to both the patients and dentist.

Comparison of the fit of the coping pattern constructed by manual and CAD/CAM, depending on the margin of the abutment tooth (지대치 변연 형태에 따른 수작업과 CAD/CAM으로 제작한 coping 패턴의 적합도 비교)

  • Han, Min-soo;Kwon, Eun-Ja;Chio, Esther;Kim, Si-chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6611-6617
    • /
    • 2015
  • The purpose of this study is to compare the marginal and internal fit of metal and zirconia coping which is fabricated by manual and CAD/CAM(Computer Aided Design/Computer Aided Manufacturing). The model is prepared with Urethane material and two abutment teeth are fabricated with a knife and chamfer margin. Silicon replica technique is used to measure the marginal fit of manually fabricated and the CAD/CAM coping. Internal fitting level is measured with a microscope and the image is captured with a CCD camera. The distance between abutment teeth and coping is measured with a callibrated image analyzer software; marginal opening (MO), marginal gap (MG), internal gap (IG) at maximum curvature area, axial gap (AG), and occlusal gap (OG). Two-way ANOVA test is applied to compare fabrication technique and to analysis of abutment pattern. In addition, one-way ANOVA and Scheffe's test is used to analyze each parameter of the test. The result shows that the fit is < $120{\mu}m$ except OG of CAD/CAM and MO of knife margin. The CAD/CAM fabricated coping showed higher fit level at chamfer margin. However, knife margin showed better fitness compared to chamfer margin at MG. AG showed the minimum dimension with a constant result (< $38{\mu}m$).

Fabrication of complete denture using 3D printing: a case report (3D 프린팅을 이용한 양악 총의치 제작 증례)

  • Lee, Eunsu;Park, Chan;Yun, Kwidug;Lim, Hyun-Pil;Park, Sangwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Recently with the advance in digital dentistry, the fabrication of dentures using computer-aided design and computer-aided manufacturing (CAD-CAM) is on the rise. The denture designed through a CAD software can be produced in a 3-dimensional manufacturing process. This process includes a subtractive processing method such as milling and an additive processing method such as 3D printing and in which it can be applied efficiently in more complex structures. In this case, complete dentures were fabricated using Stereolithography (SLA)-based 3D printing to shorten the production time and interval of visits in patient with physical disabilities due to cerebral infarction. For definitive impression, the existing interim denture was digitally replicated and used as an individual tray. The definitive impression obtained with polyvinyl siloxane impression material was including information about the inclination and length of the maxillary anterior teeth, vertical dimension, and centric relation. In addition, facial scan data with interim denture was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a FDA-approved liquid photocurable resin. The denture showed adequate retention, support, and stability, and results were satisfied functionally and aesthetically.

A Study on the Development of CAD/CAM System for High Precision Cam Profile CNC Grinding Machine (고 정밀 캠 프로파일 CNC 연삭기용 CAD/CAM 시스템 개발에 관한 연구)

  • Lim, Sang-Heon;Jung, Jong-Yun;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.44-50
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many automatic equipments, such as textile machinery, internal combustion engines and other automatic devices. In order to obtain the positive motion of follower by rotating cam, its shape should be correctly designed and manufactured. In present paper, a CAD/CAM system is developed for shape design of disk cams using relative velocity method and NC code generation using the biarc curve interpolation. And, a disk cam is successfully manufactured by the developed CAD/CAM system. Thus, it is shown that the developed CAD/CAM system can be used for high precision cam profile CNC grinding machine.

Die Manufacturing and Repair Using Laser-Aided Direct Metal Manufacturing (레이저 직접금속조형(DMM)기술에 의한 금형제작 및 보수)

  • 지해성;서정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-107
    • /
    • 2002
  • Direct Metal Manufacturing (DMM) is a new additive process that aims to take die making and metalworking in an entirely new direction. It is the blending of five common technologies : lasers, computer-aided design (CAD), computer-aided manufacturing (CAM), sensors and powder metallurgy. The resulting process creates parts by focusing an industrial laser beam onto a tool-steel work piece or platform to create a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the melt pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is built line-by-line, one layer at a time. DMM produces improved material properties in less time and at a lower cast than is possible with traditional fabrication.

  • PDF

Evaluation of marginal discrepancy of pressable ceramic veneer fabricated using CAD/CAM system: Additive and subtractive manufacturing

  • Kang, Seen-Young;Lee, Ha-Na;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.347-353
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate the marginal discrepancy of heat-pressed ceramic veneers manufactured using a CAD/CAM system. MATERIALS AND METHODS. The ceramic veneers for the abutment of a maxillary left central incisor were designed using a CAD/CAM software program. Ten veneers using a microstereolithography apparatus (AM group), ten veneers using a five-axis milling machine (SM group), and ten veneers using a traditional free-hand wax technique (TW group) were prepared according to the respective manufacturing method. The ceramic veneers were also fabricated using a heat-press technique, and a silicone replica was used to measure their marginal discrepancy. The marginal discrepancies were measured using a digital microscope (${\times}160$ magnification). The data were analyzed using a nonparametric Kruskal-Wallis H test. Finally, post-hoc comparisons were conducted using Bonferroni-corrected Mann-Whitney U tests (${\alpha}=.05$). RESULTS. The $mean{\pm}SD$ of the total marginal discrepancy was $99.68{\pm}28.01{\mu}m$ for the AM group, $76.60{\pm}28.76{\mu}m$ for the SM group, and $83.08{\pm}39.74{\mu}m$ for the TW group. There were significant differences in the total marginal discrepancies of the ceramic veneers (P<.05). CONCLUSION. The SM group showed a better fit than the AM and TW groups. However, all values were within the clinical tolerance. Therefore, CAD/CAM manufacturing methods can replace the traditional free-hand wax technique.

Fracture Strength and Translucency of CAD/CAM Zirconia Crown for Primary Anterior Tooth (CAD/CAM으로 제작한 유전치 지르코니아 전장관의 두께에 따른 파절강도와 반투명도 비교)

  • Ong, Seung-Hwan;Kim, Jongsoo;Kim, Jongbin;Shin, Jisun;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.205-212
    • /
    • 2020
  • The purpose of this study is to evaluate the validity of primary anterior zirconia crown made with Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) technology by analyzing fracture strength and translucency parameter. Zirconia crown was designed with CAD software, using 3D scanned data of #61 tooth model. Crown fabrication was performed with CAM machine using zirconia block. Zirconia crowns were divided into 3 groups according to thickness(0.3, 0.5, and 0.7 mm), and fracture strength was compared with 1.0 mm thickness of resin strip crown. The compressive force was applied with universal testing machine at 30° along the incisal edge at increments of 1 mm/min. For translucency evaluation, 0.3, 0.5, and 0.7 mm thickness of zirconia specimens were fabricated and translucency was measured with spectrophotometer. Among zirconia groups, there was a significant increase in fracture strength as thickness increased (p < 0.05). The fracture strength of zirconia crown was significantly higher than resin strip crown in all groups (p < 0.05). Translucency parameter was highest in 0.3 mm group, and significantly decreased as thickness increased to 0.5 and 0.7 mm (p < 0.05). Thin primary anterior zirconia crown can be designed and fabricated according to individual needs by using CAD/CAM. Restoration with thin crown would reduce the amount of tooth reduction, risk of pulp exposure, and make more esthetic restoration possible.