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Abstract

An expert scheduling system on real time basis for computer-aided manufacturing systems
has beer: developed. In developing expert scheduling system, the most time-consuming job is
to obtain rules from expert schedulers. An efficient process of obtaining rules directly form the
schedules produced by expert schedulers is proposed. By the process, a set of complete and
minimal set of rules is.obtained. During a real time scheduling, when given information on
possible values of elements, the rules produce possible values of decision elements, where logical
explanations of the result may be offered in terms of chaining rules. The learning and scheduling

processes have been simulated with an automated manufacturing line engaged in the production

of circuit boards.

1. Introduction

CAM - gystems are drawing increasing interest
because of their capability in responding to various
situation such as changes in product demand. The
power of those systems, however, is very depen-
ding on the efficiency of the real time scheduling

technique. In most cases, the problem of real time

scheduling in a CAM system is very hard to solve
because it cannot be well-formulated in a mathema-
tical programming or other models where a good
solution can be found in a reasonable time. There-
fore, many systems use fixed rules which does
not consider the overall situation of the systems
so that the performance of them can be good or

very bad in a dynamic situation. Recently, expert

* Purdue University.
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scheduling systems{Thesen and Lei, 1986 Yih,
1990) was introduced to overcome the difficulty.
They have shown the superior performance of an
expert scheduling system in a specific domain.
With an expert scheduling system, a schedule is
automatically selected by a rule chosen from a kno-
wledge base for a specific situation. The performa-
nee of an expert system is determined by the qua-
lity and relability of the rules in the knowledge

base.

However, the acquisition of rules suffer from
the problem of high cost and incompleteness(Nis-
bett and Wilson, 1977 ; Bainbridge, 1979 : Erics-
son and Simon, 1984 ; Collins, 1985). Conventio-
nally, the acquisition of rules is carried out by inte-
rviewing human experts and analyzing collected
verbal protocols. Most of the methods require the
experts to describe or explain the process of deci-
sion making. In some domains, the experts cannot
accurately express how they make decisions. The
acquiring process may even change experts view
of the problem.

To aveid the difficulty, a different method of
rule-acquisition which does not need direct invol-
vement of human experts can be used(Quinlan,

1979 3 Dietterich and Michalski, 1985 5 Kass and

Leake, 1987, Rhee and Yih, 1991). That is. the
rules are automatically learned from schedules pro-
duced by expert schedulers. The set of rules must
be complete and non-redundant to minimize cost.
In this paper. an expert scheduling system with
a process of learning a complete and minimal set
of rules is proposed. With the learned rules, each
decision making in a real time scheduling can be
performed by an individueal rule. or by chaining
rules. The process of rule acquisition and decision
making has been conducted with an automated ma-
nufacturing line engaged in the production of circuit
boards.

2. Instance Patterns and Rules

In Fig. 1, a simplified automated line engaged
in producing circuit boards is represented. The
line consists of chemical process tanks, an input
buffer and an output buffer. There is a material
handling robot in a track which transports a job
among buffers and tanks. Each buffer and tank
can contain a job at a time. Given a new job entry
in Input buffer, it can be moved to the tanks by
a prespecified sequence. To make the problem si-

mple, it is assumed that each circuit hoard should
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Fig, 1. A simplified circuit boards production line.
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pass through the sequence of Tank 1, Tank 2.
Tank 3, Tank 4, and Tank 5. Whenever a comple-
ted job is moved to Qutput buffer, it is automatica-
liy shipped out- The quality of a produced circuit
board is determined by the time of length it spent
in each tank. For each circuit board and each tank,
a safe time length, [T*, T*+tolerance], is pres-
pecified, (¢* is an optimal time length, ) If a circuit
board spends within the safe time length in each
tank, it becomes as good product. On the other
hand, if it stays shorter than the safe time length
in a tank, it becomes a bad product. And if it
stays longer than the safe time period in a tank,
the product will be spoiled. In this research, it
15 assumed that the optimal time length can be
different for each job but the tolerance is set to
24 minutes for all jobs and tanks. The objective
of the system is to produce as many good circuit
boards as possible in a period. At atime, the status
of the system can be represented with the following

elements :

Eo=1, if Input buffer contains a new part,
=0, otherwise.
E;=T; if there is not a spoiied job in Tank i,
where
Ti ts the remained time until safe time length
is up for the job in Tank i,
=0, if there is no job in Tank i,
=-1. if the job in Tank 1 is spoiled,
for i=1, 2,--5.
E;=the carrent position of robot(0, 1, 2,--6).
Given a status of the system, the next move
of the robot should be determined. The move of
the robot can be represented with a couple of ele-

ments -

E:=the position from which the contained job
is to be moved (0, 1, 2,-5),
Es=the position into which the job is to be moved
(1. 2,-+6).
A real time schedule can be represented as a
vector of the elements. That is,
(Ee Ei E» Es Ey Es Es E; Eo)

represent a schedule that given a status of the
systemn is by the values of Ey, E, -+, and Eg, the

next move of a job is from E-, to Es. Such a vector
will be called an “instance pattern.” In this resea-
rch, the value range of sach E;, for i=1, 2,-,
5, is divided by several ranges and any value in
a same range will be regarded as same. That is,
for i=1, 2, 3, 4, and 5,
E=1, if 24<T,
=2, if 16<Ti<24,
=3, if 8<Ti<16,
=4, if 0<Ti<8,
and E; can be 0 and -1, as described above.
Note that we can interpret the meaning of the value
E. i=1, 2, 3, 4, and 5,
if E==1, the job in Tank i is not ready,
if E;=2, the job in Tank i is ready,
if Es=3, the job in Tank i is in hurry, and
if E:=4, the job in Tank i is urgent
for moving out to make a good product. Given
a situation, that is, the values of Es Ein E Es
E. Es» and Es, a recommendable decision of the
next move of the robot, that is, the values of E;,
and E can be described by a rule. For example,
we can imagine a rule,
ifE.;=4, E;=0, and Es=1. E;=1 and E;=2.
Such a rule can be obtained from the schedules
of expert schedulers, and then. the rule is called
an “instance-based rule.” (For simplicity, it will
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be called just a rule).

From now on, the general concept of instance
patterﬁs and rules are explained. In general, let
PATSET={PAT,, PAT,."} be a given set of insta-
nce patterns and E;, for i=1, 2,--*, N, denote
the i-th element 1o an instance pattern where N

is the number of elements in each instance pattern.

It is assumed that in each instance pattern. the.

value of each E; is given. Let e[ PAT] be the value
of E; in PAT. For example, assuming that N=4,
if PAT=(1, 2, 1, 2), then e[PATI=1, e[PAT]
=2, etc. From PATSET, we can find a relation
of values of elements, or a rule, such as

“if E;=1 or 2 and E;=2, then E;=1, E.=2,
E;=1 or 2, and Es=1"

Let’s denote this rule by Rule.. Rule, will be
represented as

Rule.: (1v 2, 2, %, ¥)=(1, 2, 1v2 1,

where “v” means “or” and “*” means “any
value of E; existed in PATSET". For any rule ru-
lex» let IF(Rulex) and THEN(Rulex) denote the
left part and the right part, or called the “if" part
and the “then” part. of Ruley, representing the
condition and the conclusion of Rulex. For insta-
nce,

IF(Rule)=(1 v 2, 2, *, *) and

THEN(Rule)=(1, 2, 1v 2, 1.

For convenience, “*” will be used only in “if”
parts of rules (not “then” parts). In this paper,
n will denote an “if” part or a “then” part of a
rule that can be formed from PATSET and

Vi(ﬂ)

will denote the set of values of E; assigned in
7. For example,

Vi(IF(Rule.)) ={1. 2}

Vo(IF(Rule,)) = {2},

V:(IF(Rule,)) ={all the values of E; existed in

PATSET}, and

V,(IF(Rule,)) ={all the values of E, existed in
PATSET).

Note that for any rule rulex, Vi(THEN(Ruley))
€ v,(IF(Rulex} )., Assume that PATSET is gi-

ven as follows -

Example 1 ! Instance patterns :

PAT:=(1, 1, 1, 1),

PAT,=(1, 1, 2, 2),

PAT==(2, 1, 2, 2),

PAT.=(3, 2. 2, 2),

PAT:=(3, 3. 2. 3J,

PAT:=(3, 2, 2, 4.

Form PATSET., we can form a rule,

Rule, : (1, *, *, *)—

(1, L 1v2 1),

which is interpreted as ‘if E.=1, then E;=1,
E:=1, E;=1or2and E;=1or 2”7 and is observed
as such in PATSET because the condition “E, is
1" is satisfied only in PAT: and PAT:, E,=1. E.,=
1, Es==1or 2, E;=1 or 2, Let

PATSET[n]

be the subset of PATSET such that for each ins-
tance pattern PAT in PATSET(n],

&lPAT]  Vinlovi.

As a matter of fact, a rule Rulex can be found
from PATSET if and only if

PATSET[IF(Ruleg) 1.

Let

V{PATSETLnl}

be the set of all the values of E: existed in PAT-
SET[n], (For the purpose of convenience. V{(PA-
TSET) wilt denote the set of all the values of E;
given in PATSET.) Then,

V{THEN(Ruley)) = V,(PATSETLIF{Rulex) 1)+
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Censider the following rule,

Rule;: (Lv 2, *, ¥, Lv3y4a—>(Q, 1,
1, 1.

Note that only PAT; satisfies IF(Rules) so that
THEN(Rules) =PAT,. Consider the following rule,

Rules - Ok, %, %, ¥) > (1yv2v3 1y
2v3 1v2 1lyv2v3ivdy.

Because there are no specified values of eleme-
nts in [F(Rule,), Rule, will be called an “uncondi-
tioned rule.” Note that V{THEN(Rules)) = V,(PA-
TSET), vi.

Definition : m<m, if Vilm) C Vi(ry), vi. Here,
if M7, mM<Te. which can be interpreted as “m,

is more specific than =~

Ex. (I, 1v2, 1v2 1v2y3L(, L,
1v 2, 1.

Note that for any rule Rulex, IF(Rulex)THEN
(Rulex).

3. Complete and Minimal Set of
Rules

From a set of instance patterns, PATSET. we
can form many rules but they can be redundant.
For example, consider the following rules,

Rule;: (1 v 2 %, %, #¥)=>(1yv 2,1, 1v
2, 1v 2}

Rules- (*, 1v 2, *, 2v3)->0v2vs3
1v2 2 2) and

Rules: (1v 2, #, ¥, 2v3va-(1v2
1 2. 2),

formed from PATSET in Example 1. Rules is
redundant with Rule; and Rules. Let an initial state

of elements s given as represented in IF{Rules)-

That is,
E;=1or 2, and E.=2 or 3 or 4.
Then, IF(Rule,) is satisfied by the state so that
from THEN(Rule,),
Ei=lor 2, E;=1 E:=1 or 2 and E;=1 or 2,
and therefore, the state of elements is updated

as follows -

Ei=1 or 2, E:=1 Es=1 or 2 and E.=2.

Now. IF(Ruies) is satisfied by the state (and
the state of elements will be updated again by
THEN(Rules)). Note that

V.(THEN{(Rule,)) =V.(THEN(Rule) ) Vi
(THEN{Rules)) .

That is, if the state of elements is given as IF
(Rules), then IF(Ruley) and IF(Rules) are satisfied
“in chain” and the conclusion given in THEN (Rule
¢} can be produced by combining THEN(Rule,)
and THEN(Rules).

Definition : Rulex “can be explained by chai-
ning” Rule,, Ruley, ", and Rule, if, an initial state
of elements is given as represented in IF(Rulex),

(1) if the initial state satisfies IF(Rule.}, that
is,

Vi{(IF(Rulex)) < V:(IF(Rule.)),~4,

the updated state of elements by THEN(Rule,)
satisfies IF(Rule,), that is,

V.(IF(Rulex) ) "V:{ THEN (Rule,)) CVi(IF(Ru-
len) ), i,

the updated state of elements by THEN(Rule,)
satisfies IF(Rule.), that is,

V{IF(Rulex) )NV:(THEN(Rule,)) n V{(THEN
(Ruley))

< V{IF(Rule.)), v,

-, and the updated state of elements by THEN
(Rule,) satisfies IF(RuleJ, that is,
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Vi(IF(Ruler)) n VATHEN(Rule,)) 1 V(THEN
(Ruley)) - n Vi{THEN(Rule,))
C Vi(IF(Rule)) , v,
and
(11} V{THEN(Rulex))
=V,(THEN(Rule,)) n V{THEN(Rule,))
N - N VI(THEN(Rule)) i,
Note that a rule Rulex “can be explained by a
single rule” Ruley, if
IF(Ruley) £ IF(Rulex) and THEN(Rulex)=
THEN(Ruley).
Let ALL(PATSET) be the set of ali the rules
that can be obtained from PATSET.

Definition A set of rules obtainable from PAT-
SET is defined as a complete and minimal set of
rules, represented as MIN(PATSET), if

i} each rule in ALL{PATSET) —MIN{PATSET)
can be explained by chaining rules in MIN(PAT-
SET) and

i) each rule in MIN(PATSET) cannct be explai-
‘hed by chaining other rules in MIN(PATSET).

Note that MIN(PATSET) is a non-redundant set

of rules and any rule that can be formed from PAT-

SET is a rule of MIN(PATSET) or can be explai-
ned by chaining rules of MIN(PATSET)

4. Leaming Algorithm of a complete
and minimal set of rules

Let COM(PATSET) be the set of rules obtaina-
ble from PATSET such that

i) each rule in ALL(P‘ATSET) —COM(PATSET)
can be explained by a singie rule in MIN(PATSET)
and .

i) each rule in COM{PATSET) cannot be exp-
lained by a single rule in MIN(PATSET).

Note that MIN(PATSET) is a subset of COM
(PATSET}, Let PAT,, i=1, 2.-** be the i insta-
nce pattern presented and PATSET,={PAT:, PAT
»s PATH

ALGORITHM

Phase 1, Initialize. Obtain COM(PATSET,).
For p=2, 3,"", up to the fal inst;ance pattern
PATSET. do the following :
Phase p. Obtain COM(PATSET,) from COM
(PATSET,.) and PAT,.
p-1: Find and medify incorrect rules in
COM(PATSET,.).
p-2 - Create new rules.
p-3 - Obtain each rule that can be explai-
ned by another single rule in COM(PAT.
SET,.) which was found incorrect in p-1.
p-4 : From the rules in hand, obtain COM
(PATSET,).
Phase™. From the rules obtained. obtain MIN
(PATSET).
In Phase 1, with the first instance pattern, PAT,,

COM(PATSET)) is easily obtained.
Actually, it has one and only one rule, Ruleyx.

such that
IF(Rulex=(*. *,-, %) and
THEN(Rulex) =PAT.
For example, if PAT,=(1, 1. 1, 1), the only
rule in COM(PATSET,) is
Rulex: (%, *,. %, *)=>(1, 1, 1, 1)
because for any other nile Ruley in ALL{PAT:),
IF(Ruley) £ IF(Ruley) and THEN(Rule,)=
THEN(Rulex).
That is, Ruley can be explained by Rules.
Consider Phase p-1. Let Rulex® be a rule in ALL
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(PATSET,.) and Rulex be the corresponding rule
in ALL(PATSET,) such that Rulex® is modified
to Rulex according to PAT,. For any rule, whether
it is in ALL(PATSET,..) or in ALL(PATSET,) will
be represented by whether “o” exists or not in
the name of the rule. For convenience. let

ef=e[PAT,], s,

Definition : Rulex® is incorrect with PAT, in E,
if PAT, satisfies {F(Rulex®) and ef#V, (THEN
{(Rulex®)).

Rulex® is modified to Rulex as follows :

IF(Ruley) = IF(Rulex®) and

Vi(THEN(Rulex)) = V{ THEN(Rulex®)) U fe},
.

For example, assume that we have

Rulex° I (%, *, %, #)-(1, 1, 1, 1) and

PAT,=(1, 1, 2, 2).

Rulex® is incorrect with PAT, in E; and E; so
that Ruley® must be modified to

Rulex: (*, *, %, ¥)-(1, 1, 1v 2, 1, v
2.

Note that if Ruley® is correct with PAT,. Ru-
lex=Rulex®.

Note that in phese p-1, we do not find and modify
incorrect rule in the set of ALL{PATSET,,)-COM
(PATSET,.).- The reason is as follows :

Assume the Ruley® is a rule in the above set
and is incorrect with PAT, in E.. Then, Ruley®
can be explained by another rule Rule,® in COM
(PATSET,.). Because

[F(Rulex®} £ IF(Ruley®) and THEN(Ruley®)=
THEN(Ruley®),

Rule,® must be incorrect with PAT, in En, too.
Therefore,

THEN(Ruley) = THEN(Ruley).

And because

IF(Rulex) =IF(Rulex®) £ IF(Ruley) =1F(Ruley*)

Ruley can be explained by Rulex, Therefore, Ru-
ley cannot be in COM(PATSET,) so that it need
not be obtained.

In Phase p-2, consider new rule Ruley, that is,
there does not exist a corresponding rule Ruley®.
Then PATSET,.(IF(Ruler)) must be empty be-
cause if not, Rulex® exists, Therefore PATSET,
(IF(Rulex)) ={PAT, so that

THEN(Ruley) =PAT,.

Note that if there is another new rule Ruley such
that IF(Ruley) £ IF(Ruley), and THEN(Ruley)=
PAT,, Rulex can be explained by Ruley so that Ru-
lex cannot be in MIN{PATSET,). Therefore, if
Ruley is a rule of MIN(PATSET,), it must be that
for each element E., such that V..(IF(Rule x)} CVa
(PATSET,) and for any rule Rule; such that

V{IF(Ruley)) =V;(IF(Ruley)) for i = m and

Va(IF(Ruley)) C V. (IF(Rulez),

Rule; is not a new rule, that is, Rule;® exists.
Note that PAT, satisfies IF(Rulez°). Also note that
Rulez® must be incorrect with PAT, in E.. that
is, e €V,(THEN(Rule:*)). It is because if
er* €EV.(THEN(Rule;?)), PATSET, (IF(Rule;
°)) must have an instance pattern PAT where e,
[PAT]=e.* and because

IF(Rulez) =IF(Rulez) and e.* & Vo{IF(Ru-
lex)),

PAT will satisfy IF(Rulex) and therefore, PAT.
SET;;: (IF(Rulex)) will not be empty. And for each
value e, of E. such that e.* & V.(THEN(Ru-
lez°)), it must be that

e & Vo (IF(Ruley))

because PATSET,, (IF{Rulez°)) has an instance
pattern PAT where e,PAT]=e,", so that if e,’

€ V.(IF(Rulex)), PAT will satisfy IF(Rulex) and
therefore,

PATSET, (IF(Rulex)) £¢
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A new rule Rulex can be constructed from each
rule Rule:® in ALL{PATSET,.} and each element
E.. such that Rule;® is incorrect with PAT; -

V{IF(Ruley) ) =Vi{(IF(Rule:°)) for ism,

e’ € Vo (IF(Ruley))
(THEN(Rulez°)) =

and V.{IF(Rulex)) NVa

Note that there could be multiple rules that sati-
sfy (7). Among them. we only have to obtain Ru-
lex* such that

VolIF(Rulex")) ={ef}n (V. (PATSET,.) ~ V.,
(THEN(Rulez")) (8)

because all other rules will have more specific
“if” part than IF(Rulex*) so that they can be exp-
lained by Rulex®. From now on Rulex” will be rep-
resented by (Rule;®).t.

Theorem : In Phase p-2, we only have to gene-
rate (Rulew®},” for each rule Rulew® and En. such
that Rulew® is incorrect with PAT, in E, and Rules®.
is in COM(PATSET, .

proof Consider a rule Rule;° which is in ALL
(PATSET,.) —COM(PATSET,.). Then Rule®
can be explained by a rule Rules® in COM(PAT.
SET,.). Assume that Rulez* is incorrect with PAT,
in an element E.. Then, Ruley® is also incorrect
with PAT, in E, so that we can consider (Rulew®).’
and (Rule;°).". Because the “if” part of (Rules®)n®*
is less specific than the “if” part of (Rulez®, and
the “then” parts of (Rulew®).” and (Rule;°).* are
the same, (Rule;*)n" can be explained by {Rulew®)
.2 Therefore, (Rule;)" cannot be in COM(PAT-
SET,} and need not be generated.

Let Ruley® be the unconditioned rule formed
from PATSET,... Note that Ruley® must be in COM
(PATSET,)» and V.{PATSET,.) can be found
in THEN(Rulev®) because V,(THEN(Rulec®)) =
V.(PATSET,.)). For example, assume that we
have

Ruler* 1 (*, *, %, #)~»(1yv2v3 1v
2.1v2v3 1v2),

Rulew® : (1 v 2, #*, 1 v 2,
1+ 2) and

PAT,=(1, 2. 2, 2).

Ruley® is incorrect with PAT, in E; and E; and

#)->(1, 1, 1,

new rules to be generated corresponding to E» and
E; are

(Rulew®)s®: (1 v 2, 2, 1v 2, ¥)—=(1, 2, 2,
2) and

(Rulew?)#: (1v 2, *, 2 v 3, *)=(1, 2,
2, 2)

Now. consider Phase p-3. Let Rulex® can be
explained by a rule Ruley® in COM(PATSET,.).
As defined above, let ea=elPAT, 1. v i

Lemma : If Rulex® can be explained by Ruley®
and if Rules is a rule in COM(PATSET,), (A}
there is an element E., such that Ruley® is incorrect
with PAT, in E. but Rulex® is not incorrect with
PAT, in E..

(B) IF(Rulex®) = IF(Ruley®) except that e* € V:
(IF{(Ruley®)) but e ¢ Vi(IF(Rulex°)) for one and
only one element E, such that Ruley® is incorrect
with PAT, in E, but Rulex® is not incorrect with
PAT, in Ea.

proof of A} Assume that there is no such ele-
ment, that is, for each element E; such that Ruley®
is incorrect with PAT, in Ei, Rulex® is also incorrect
with PAT, in E. Note that because IF(Ruley)<

IF(Rulex*) and THEN(Rulex®) =THEN(Ruley
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°), if Rulex® is incorrect with PAT, in an element
E;» Rulev® is also incorrect with PAT, in E;. There-
fore, THEN(Rulex) =THEN(Ruley). And because
IF(Ruley) =IF{(Ruley®) £ IF(Rulex®) =IF(Ruleg),
Rulex can be explained by Ruley, and therefore,
Rulex should not be in COM(PATSET,).

proof of B) Note that the above conclusion (A)
implies that [F(Rulex®) is not satisfied by PAT,
because if satisfied, THEN{Rulex®) =THEN{Ru-
ley*) and Rulex® Is incorrect with PAT, in E,.
(therefore, Rulex® must be correct with PAT,).
Then, there must exist at least one element E,

such that

e & V.(Rulev®)) but ef & (IF(Ruley*)).

consider Rulez® such that IF(Rule*) =IF(Ru-
ley®) except that e & V,(IF(Rulev®)) but e £V,
(IF(IFRule;°)).

Assume that there is another element F, such
that

& € Vo(IF(Ruley®)) but e & V,(IF(Rulex®)).

Ther. IF(Ruley®) £ IF(Rulez*) £ IF(Rules®).
Because THEN(Rulex°)} =THEN(Ruley°), it must
be that THEN(Rule;?)=THEN(Rulex®). There-
fore, Rulex® can be explained by Rule,”. Further-
more, because both rules are correct with PAT,,
Rulex can be explained by Rule; and Ruley should
not be in MIN(PATSET,). Therefore. in this case,
Rulex® does not need to be restored. Therefore,
there must be one and only one element E, such
that (1} holds. From (10}, e*¢ V.(IF{Rulex°)}
and IF(Rulex*) £ THEN(Rulex®), so

e’ ¢ V,(THEN(Ruley®}) = V.(THEN(Ruley
).

And because e & V.(IF{Ruley*} ). Ruley® must

be incorrect with PAT, in E..

The above lemma implies that in Phase p-3, for
each rule Rule,® that is a rule in COM(PATSET,
» and for each element E, such that Rule,® is
incorrect with PAT, in E.. we need to restore the
rule Rulex® as follows.

IF(Rulex®) = IF(Rulev®) except that e,* € Va(IF
(Ruley®)) but e, & V. (IF(Rule®)),

(that is, Vn(IF(Rulex*)) =V (IF(Rulex*)) —
esal), and

THEN(Rulex®) = THEN(Rulev®).

{(Note that the rule Ruley® is either in MIN{PAT.
SET,.) or is restored in Phase 1-1). Here, it will
be represented by

Rulex® =(Ruley*)..>.

Note that in the case of Va(Rulev®))=V.(PAT
SET,.). V.{IF(Rulex")) can be found from V,
{THEN{Ruleu®)). For example, assume that we
have

Rulece s (%, *, %, *)=(1 v 2v 3 1lv
2, 1v2v3 1v2,

Rulevr 1 (1 v 2 %, 1v 2 #)-(1L, L 1 1
v 2) and

PAT,=(1, 2. 2. 2).

Ruley® is incorrect with PAT, in E; and E; and
rules to be restored corresponding to E; and E;
are

(Ruley®)? 1 (1v 2, 1, 1v 2 #*)>(1L 1, L,
1v 2) and

(Rulev)# i {1 v 2, *, 1, %¥)={(1, 1, 1, 1
v 2),

Phase p-4 can be done as follows : Check each
rule. Ruiex. on hand in any sequence if Rulex can
be explained by another rule on hand. If it is,
delete Ruley.

Phose® can be done as follows - Check each rule,
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Rulex, on hand in any sequence if Rulex can be
explained by chaining rules remained on hand.
It can be done as follows :

Set an initial state as represented in IF{Rule.)
and find another rule, Ruley, such that IF(Ruley)
is satisfied by the state and update the state with
THEN(Ruley) and similarly, find another rule

whose “if’ part is satisfied by the updated state
and update the state again, etc. until there is no

other rules whose “if” part is satisfied by the upda-
ted state. And then. we can check if Rulex can
be explained by chaining these activated nies as
described in the definition.

5. Experiment

The real time scheduling of the manufacturing
line engaged in the producing circuit boards, as
described before, was performed by over 100 stu-
dents. A student was selected as an expert schedu-
ler based on performance. From the data of the
schedules produced by the expert scheduler, a co-
mplete and minimal set of rules was obtained by
the algorithm suggested in the previous section.
The number of schedules made by the expert sche-
duler for obtaining rules was 2125 and the number
of learned rules of a complete and minimal set
was 176. In other words, the behavior of the expert
scheduler can be explained by the 176 rules. Exa-

mples of learned rules are listed below -

1) If E;=4, E;=0, and E; E. Es=0, 1, 2
or 3, then E,=1, Es=2

2) If Ei E» Es E,,=0, 1, 2, and E;=2,
3 or 4, then E;=5, Es=6

3} If E;=0, or 1, E.=3 or 4, E;=0, E;=3,
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and Es=0, 1, 2, then E;=2, E.=3

4) If E,=-1, and E;, Es Eis Es=0, 1, or 2.
then E;=1, Es=6

5 KE=0, 1, 2, or 3, Ez»» E=1, 2, 3, or
4, E.=1, 2. 3. or 4 and E;=0, then E;=4,
Es=5

6) If E,=0 or 1, E;=0 or 1. Es=-1. E.=0,
and Es=0, or 1, E;=3, Es—~4

7) If E;, Ex=1 or 2, E;=4, E.=1 or 2, and

Es=0, then E;=4, E,=5

8) fE=0or 1, E;=2or 3, E;=0 E,=-1 and
E;=0, 1, or 2, then E;=2 Es=3

9 I E;=1, E,, Ea Ei E:=0o0r 1, then E;=
0. Es~=1

10) If E;=1 or 2, Es=0, E;=0 or 1n E.=0
or 1, Es=0, and Es=0, 1. or 2, then E:=2
E.=3

The learned rules agree with the commeon sense
even though some are more or less technical. For

example, the rule of 1) represents the behavior
of the expert scheduler that if the job in Tank 1
is urgent to be moved out, there is no job in Tank
2 (so that a job can be moved into Tank 2}, and
the other jobs in the other tanks are nof urgent
to be moved out, the next move of the robot is
to move the job in Tank 1 to tank 2. The rules
4) represents that if the job in Tank 1 is spoiled
and the other jobs in the other tanks are not in
hurry or urgent to be moved out, the next move
of the robot is to take the job in Tank 1 away to
Qutput buffer. The followings are some cases of
schedules generated by the learned rules with ran-

dom situations :

1) Situation © E,.=0, E.=1. E:=2, Es=
_Or E5 1, Eﬁ 5

0, E,
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Generated schedule ! E;=2, E;=3

2} Situation : E,=1, E;=0, E.=1, Es=1, E,
=0, Es=1, E;=2
Generated schedule ! E,=0, E;=

3) Situation : E;=90, E.=0, Es=0, Es=0, E,
=.1, E;=2, E;=4

Generated schedule - E;=5, E;=6

4) Situation ! E,=0, E,=1, E,=1, E;=1, E,
=2, E:=0, E~=1
Generated schedule ! E;=4, E;=

5) Situation : E)=1, E;=0, E.=1, Es=1, E,
=-1, E;=0, E;=2
Generated schedule © E;:=4, E,~6

6. conciusion

In this paper, an expert scheduling system
where rules for the knowledge base are obtained
from schedules generated by expert scheudlers was
suggested. A case of computer-aided manufactu-
ring line producing circuit boards was adopted for
simulation. By the rule-generation methed, the
behavior of an expert scheduler in decision making
was saved in a complete and minimal set of rules
to be used in later real time scheduling.

Obviously, the learning algorithm offers a great
advantage of bypassing the troublesome and costly
procedure of obtaining rules from a domain expert.
The quality of the obtained rules is closely related
to the quality of the schedules used for obtaining
those rules and how well the elements are set up.
In some problem domains, a probabilistic conclu-
sion is more realistic. The suggested system can
be extended to the case of frequency-based proba-

bilistic rules. This remains for future research.
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