• Title/Summary/Keyword: CAD Models

Search Result 467, Processing Time 0.025 seconds

A Study on Supporting Design Decision Making in Office Building Remodeling Projects by Introducing Mixed Reality (혼합현실 도입 오피스 건물 리모델링 프로젝트 설계 의사결정 지원)

  • Han, Mooyeul;Baek, Kwanyup;Lee, Kyung-Tae;Ko, Seonju;Kim, Ju-Hyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.3-12
    • /
    • 2021
  • In the remodeling projects, clients without architectural expertise have limitations in presenting requirements accurately. In some cases, designers and contractors may not recognize their demands exactly, and deliver final products that are different from the clients' intentions. 3D modeling visualizing final products in previous has been regarded as a solution to enhance understanding and communication. However, this approach has the limitation that the final results are presented as a virtual outputs. In the remodeling project, an alternative, mixed-reality, is likely to reinforce the reality as it enables to present remain structure and the parts to be built together. This paper examines the mixed reality as a solution to support decision making of clients and practitioners in remodeling projects. The examinations is conducted in high-rise office remodeling projects by means of action-research. Clients and practitioners, overview product models presented in the format of 2D drawings, BIM and mixed reality asked to evaluate the effectiveness of each methods in 12 standards. The results have shown that mixed reality has improved the sense of reality, making it easier to predict results, but recognizing patterns is difficult in some areas such as the floor, and it caused dizziness.

Performance comparison between two computer-aided detection colonoscopy models by trainees using different false positive thresholds: a cross-sectional study in Thailand

  • Kasenee Tiankanon;Julalak Karuehardsuwan;Satimai Aniwan;Parit Mekaroonkamol;Panukorn Sunthornwechapong;Huttakan Navadurong;Kittithat Tantitanawat;Krittaya Mekritthikrai;Salin Samutrangsi;Peerapon Vateekul;Rungsun Rerknimitr
    • Clinical Endoscopy
    • /
    • v.57 no.2
    • /
    • pp.217-225
    • /
    • 2024
  • Background/Aims: This study aims to compare polyp detection performance of "Deep-GI," a newly developed artificial intelligence (AI) model, to a previously validated AI model computer-aided polyp detection (CADe) using various false positive (FP) thresholds and determining the best threshold for each model. Methods: Colonoscopy videos were collected prospectively and reviewed by three expert endoscopists (gold standard), trainees, CADe (CAD EYE; Fujifilm Corp.), and Deep-GI. Polyp detection sensitivity (PDS), polyp miss rates (PMR), and false-positive alarm rates (FPR) were compared among the three groups using different FP thresholds for the duration of bounding boxes appearing on the screen. Results: In total, 170 colonoscopy videos were used in this study. Deep-GI showed the highest PDS (99.4% vs. 85.4% vs. 66.7%, p<0.01) and the lowest PMR (0.6% vs. 14.6% vs. 33.3%, p<0.01) when compared to CADe and trainees, respectively. Compared to CADe, Deep-GI demonstrated lower FPR at FP thresholds of ≥0.5 (12.1 vs. 22.4) and ≥1 second (4.4 vs. 6.8) (both p<0.05). However, when the threshold was raised to ≥1.5 seconds, the FPR became comparable (2 vs. 2.4, p=0.3), while the PMR increased from 2% to 10%. Conclusions: Compared to CADe, Deep-GI demonstrated a higher PDS with significantly lower FPR at ≥0.5- and ≥1-second thresholds. At the ≥1.5-second threshold, both systems showed comparable FPR with increased PMR.

Development of Work-related Musculoskeletal Disorder Questionnaire Using Receiver Operating Characteristic Analysis (Receiver Operating Characteristic 분석법을 이용한 업무관련성 근골격계질환 설문지 개발)

  • Kwon, Ho-Jang;Ju, Yeong-Su;Cho, Soo-Hun;Kang, Dae-Hee;Sung, Joo-Hon;Choi, Seong-Woo;Choi, Jae-Wook;Kim, Jae-Young;Kim, Don-Gyu;Kim, Jai-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.3
    • /
    • pp.361-373
    • /
    • 1999
  • Objectives: Receive Operating Characteristic(ROC) curve with the area under the ROC curve(AUC) is one of the most popular indicator to evaluate the criterion validity of the measurement tool. This study was conducted to develop a standardized questionnaire to discriminate workers at high-risk of work-related musculoskeletal disorders using ROC analysis. Methods: The diagnostic results determined by rehabilitation medicine specialists in 370 persons(89 shipyard CAD workers, 113 telephone directory assistant operators, 79 women with occupation, and 89 housewives) were compared with participant's own replies to 'the questionnair on the worker's subjective physical symptoms'(Kwon, 1996). The AUC's from four models with different methods in item selection and weighting were compared with each other. These 4 models were applied to 225 persons, working in an assembly line of motor vehicle, for the purpose of AUC reliability test. Results: In a weighted model with 11 items, the AUC was 0.8155 in the primary study population, and 0.8026 in the secondary study population(p=0.3780). It was superior in the aspects of discriminability, reliability and convenience. A new questionnaire of musculoskeletal disorder could be constructed by this model. Conclusion: A more valid questionnaire with a small number of items and the quantitative weight scores useful for the relative comparisons are the main results of this study. While the absolute reference value applicable to the wide range of populations was not estimated, the basic intent of this study, developing a surveillance fool through quantitative validation of the measures, would serve for the systematic disease prevention activities.

  • PDF

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

Effect of attachments and palatal coverage of maxillary implant overdenture on stress distribution: a finite element analysis (상악 임플란트 피개의치에서 유지장치 종류와 구개 피개 유무에 따른 응력분포에 대한 유한요소분석)

  • Park, Jong-Hee;Wang, Yuan-Kun;Lee, Jeong-Jin;Park, Yeon-Hee;Seo, Jae-Min;Kim, Kyoung-A
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effect of attachments and palatal coverage on stress distribution in maxillary implant overdenture using finite element analysis. Materials and Methods: Four maxillary overdenture 3-D models with four implants placed in the anterior region were fabricated with computer-aided design. 1) Ball-F: Non-splinted ball attachment and full palatal coverage, 2) Ball-P: Non-splinted ball attachment and U-shaped partial palatal coverage, 3) Bar-F: Splinted milled bar attachment and full palatal coverage, 4) Bar-P: Splinted milled bar attachment and U-shaped partial palatal coverage. Stress distribution analysis was performed with ANSYS workbench 14. 100 N vertical load was applied at the right first molar unilaterally and maximum stress was calculated at the implant, peri-implant bone and mucosa. Results: The use of the ball attachment showed lower maximum stress on implant and peri-implant bone than the use of the milled bar attachment. But it showed contrary tendency in the mucosa. Regardless of attachment, full palatal coverage showed lower maximum stress on implant, peri-implant bone and mucosa. Conclusion: Within the limitation of this study, ball attachment improved stress distribution on implant and peri-implant bone rather than milled bar attachment in maxillary implant overdenture. Also, full palatal coverage is more favorable in stress distribution.

Development of 3D Printed Snack-dish for the Elderly with Dementia (3D 프린팅 기술을 활용한 치매노인 전용 영양(수분)보충 식품섭취용기 개발)

  • Lee, Ji-Yeon;Kim, Cheol-Ho;Kim, Kug-Weon;Lee, Kyong-Ae;Koh, Kwangoh;Kim, Hee-Seon
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2021
  • Objectives: This study was conducted to create a 3D printable snack dish model for the elderly with low food or fluid intake along with barriers towards eating. Methods: The decision was made by the hybrid-brainstorming method for creating the 3D model. Experts were assigned based on their professional areas such as clinical nutrition, food hygiene and chemical safety for the creation process. After serial feedback processes, the grape shape was suggested as the final model. After various concept sketching and making clay models, 3D-printing technology was applied to produce a prototype. Results: 3D design modeling process was conducted by SolidWorks program. After considering Dietary reference intakes for Koreans (KDRIs) and other survey data, appropriate supplementary water serving volume was decided as 285 mL which meets 30% of Adequate intake. To consider printing output conditions, this model has six grapes in one bunch with a safety lid. The FDM printer and PLA filaments were used for food hygiene and safety. To stimulate cognitive functions and interests of eating, numbers one to six was engraved on the lid of the final 3D model. Conclusions: The newly-developed 3D model was designed to increase intakes of nutrients and water in the elderly with dementia during snack time. Since dementia patients often forget to eat, engraving numbers on the grapes was conducted to stimulate cognitive function related to the swallowing and chewing process. We suggest that investigations on the types of foods or fluids are needed in the developed 3D model snack dish for future studies.