Browse > Article
http://dx.doi.org/10.4047/jkap.2015.53.2.120

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling  

Nam, Ok-Hyun (Department of Dentisty, Busan Paik Hospital, Inje University)
Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University)
Kyung, Hee-Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.53, no.2, 2015 , pp. 120-127 More about this Journal
Abstract
Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.
Keywords
Implant; Finite element analysis; Thread design; Osseointegration states;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 2004;31:233-9.   DOI
2 Kong L, Liu B, Li D, Song Y, Zhang A, Dang F, Qin X, Yang J. Comparative study of 12 thread shapes of dental implant designs: a three-dimensional finite element analysis. World J Model Simul 2006;2:134-40.
3 Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70.   DOI
4 Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-6.
5 Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv Med Appl Sci 2013;5:162-7.
6 Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74.   DOI
7 Kim SH, Kim S, Lee KW, Han DH. The effects of local factors on the survival of dental implants: A 19 year retrospective study. J Korean Acad Prosthodont 2010;48:28-40.   DOI
8 Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
9 Misch CE. Dental implant prosthetics. St. Louis, Mosby; 2005. p. 322-47.
10 Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, Liu B. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2008;23:65-74.
11 Seo YH, Vang MS, Yang HS, Park SW, Park HO, Lim HP. Threedimentional finite element analysis of stress distribution for different implant thread slope. J Korean Acad Prosthodont 2007;45:482-91.
12 Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58.   DOI
13 Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 2004;31:233-9.   DOI
14 Esposito M, Thomsen P, Ericson LE, Lekholm U. Histopathologic observations on early oral implant failures. Int J Oral Maxillofac Implants 1999;14:798-810.
15 Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, Puers R, Naert I. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res 1998;9:407-18.   DOI
16 Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 2005;20:425-31.
17 Yu WJ, Ha SJ, Cho JH. Effects of implant thread profile on insertion stress generation in cortical bone studied by dynamic finite element simulation. J Korean Acad Prosthodont 2014;52:279-86.   DOI
18 Schwitalla AD, Abou-Emara M2, Spintig T, Lackmann J2, Muller WD3. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015;48:1-7.   DOI
19 Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Threedimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005;93:227-34.   DOI
20 Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. 3DFEA of osseointegration percentages and patterns on implant-bone interfacial stresses. J Dent 1997;25:485-91.   DOI
21 Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent 2008;36:409-17.   DOI
22 Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 2004;15:239-48.   DOI
23 Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of boneimplant micromotion relevant to osseointegration. J Biomech 2000;33:1611-8.   DOI
24 Rubin PJ, Rakotomanana RL, Leyvraz PF, Zysset PK, Curnier A, Heegaard JH. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component. J Biomech 1993;26:725-39.   DOI
25 Albrektsson T, Berglundh T, Lindhe J. Osseointegration: Historic background and current concepts. In Lindhe J, Karring T, Lang NP (eds). Clinical periodontology and implant dentistry. Oxford; Blackwell Munksgaard; 2003. p. 809-20.
26 Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
27 Wehner T, Penzkofer R, Augat P, Claes L, Simon U. Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech (Bristol, Avon) 2011;26:147-51.   DOI
28 Bardyn T, Gedet P, Hallermann W, Buchler P. Prediction of dental implant torque with a fast and automatic finite element analysis: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:594-603.   DOI
29 Lin D, Li Q, Li W, Ichim I, Swain M. Evaluation of dental implant induced bone remodelling by using a 2D finite element model. Proceedings of the 5th Australasian Congress on Applied Mechanics (ACAM 2007). 2007 Dec 10-12, Brisbane; Australia; p. 301-6.
30 Atieh MA, Shahmiri RA. Evaluation of optimal taper of immediately loaded wide-diameter implants: a finite element analysis. J Oral Implantol 2013;39:123-32.   DOI
31 Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101.