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 Compared to CADe, Deep-GI demonstrated a higher polyp detection sensitivity with significantly lower false positive 
rate at ≥�.� and ≥ � second thresholds. At the ≥�.�-second threshold, both systems showed comparable false positive 

rates with increased polypmiss rate. 
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• A cross-sectional study in 170 colonoscopy videos
• Aims to compare the polyp detection performance of “Deep-GI,” a newly 

developed AI model, to a previously validated computer-aided polyp detection (CADe) 
and GI trainees, using various false positive (FP) thresholds 3 expert endoscopists detection  

was used as the gold standard
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Performance comparison between two computer-aided detection 
colonoscopy models by trainees using different false positive thresholds: 
a cross-sectional study in Thailand



Background/Aims: This study aims to compare polyp detection performance of “Deep-GI,” a newly developed artificial intelligence 
(AI) model, to a previously validated AI model computer-aided polyp detection (CADe) using various false positive (FP) thresholds 
and determining the best threshold for each model. 
Methods: Colonoscopy videos were collected prospectively and reviewed by three expert endoscopists (gold standard), trainees, CADe 
(CAD EYE; Fujifilm Corp.), and Deep-GI. Polyp detection sensitivity (PDS), polyp miss rates (PMR), and false-positive alarm rates 
(FPR) were compared among the three groups using different FP thresholds for the duration of bounding boxes appearing on the 
screen. 
Results: In total, 170 colonoscopy videos were used in this study. Deep-GI showed the highest PDS (99.4% vs. 85.4% vs. 66.7%, p<0.01) 
and the lowest PMR (0.6% vs. 14.6% vs. 33.3%, p<0.01) when compared to CADe and trainees, respectively. Compared to CADe, 
Deep-GI demonstrated lower FPR at FP thresholds of ≥0.5 (12.1 vs. 22.4) and ≥1 second (4.4 vs. 6.8) (both p<0.05). However, when the 
threshold was raised to ≥1.5 seconds, the FPR became comparable (2 vs. 2.4, p=0.3), while the PMR increased from 2% to 10%. 
Conclusions: Compared to CADe, Deep-GI demonstrated a higher PDS with significantly lower FPR at ≥0.5- and ≥1-second thresh-
olds. At the ≥1.5-second threshold, both systems showed comparable FPR with increased PMR. 
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INTRODUCTION 

Colorectal cancer (CRC) is the world's third leading cause of 
cancer-related death.1,2 Over the past decade, CRC incidence 
and mortality have declined due to an increase in CRC screen-
ing and other preventive examinations.3 Among screening 
tools, colonoscopy has become the gold standard because of its 
ability to detect and remove premalignant colorectal polyps. It 
is estimated that identification and removal of colonic adeno-
mas lead to CRC incidence reduction by 25% to 30%.4 One of 
the most recognized quality indicators of colonoscopy is the 
adenoma detection rate (ADR).5,6 A greater ADR is associated 
with longer withdrawal times and increased experience of the 
endoscopist.7,8 For trainees with limited experience, ADR can 
remain low despite a long withdrawal time. This underscores 
the need for an adjunct modality to enhance the ADR of endos-
copist trainees. 

The main limitation of the ADR is the calculation and re-
porting hindrance that requires linkage between electronic 
endoscopic medical reports and pathological report systems for 
every single polyp removed, which may not be available in all 
endoscopy units, while the polyp detection rate (PDR) is easier 
and more practical to retrieve. Several studies have identified a 
strong association between PDRs and ADRs. Therefore, PDRs 
have been proposed as ADR surrogate markers, eliminating the 
need to track final histology.9-12 Recently, advancements in com-
puter-aided polyp detection (CADe) models have shown prom-
ising results in the improvement of polyp detection and polyp 
differentiation.13-18 Therefore, artificial intelligence (AI)-assisted 

colonoscopy is expected to significantly impact standard endos-
copy practices and training. 

False positive (FP) alarms are a significant disadvantage 
of AI-assisted colonoscopies. High false-positive alarm rates 
can cause stress, visual disturbances, unnecessary checking of 
non-pathological areas, and prolonged procedure times.19,20 

However, lowering the false-positive threshold may also de-
crease detection sensitivity.21 Thus, we developed “Deep-GI,” an 
AI model for colonic polyp detection that aimed for a lower FP 
alarm rate with comparable polyp detection sensitivity (PDS). 

The primary objective of our study was to compare the polyp 
detection performance of "Deep-GI,” a newly developed AI 
model, to a previously validated CADe (CAD EYE; Fujifilm 
Corp.) using various FP thresholds, with the secondary goal of 
determining the best FP threshold for each model, using white 
light colonoscopies by gastroenterology trainees as a control. 

METHODS 

Deep-GI model development 
We developed an AI-assisted polyp detection model called 
“Deep-GI” using colonoscopy images from the Center of Ex-
cellence for Innovation and Endoscopy in Gastrointestinal 
Oncology, King Chulalongkorn Memorial Hospital 2017–2021 
database. Both white light endoscopic images and image-en-
hanced endoscopic images (IEE) using blue light imaging (BLI) 
and linked color imaging (LCI) were included. All uninforma-
tive numerical and nonnumerical data on the captured screen 
were removed from the raw endoscopic images without any 
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additional modifications or annotations to mimic live endos-
copy as much as possible. Two expert endoscopists (KT and 
SA), each with more than 5 years of experience in colonoscopy 
and ADR of more than 35% were chosen to review and identify 
colonic polyps on still images using “LabelMe,” a free open-
source labeling software published by Massachusetts Institute 
of Technology. The labeled images were served as the “ground 
truth” images. Any discrepancies were resolved by a 3rd expert 
endoscopist (PM). Following the labeling process, all the imag-
es were divided into three datasets. Eighty percent (12,148 im-
ages) of the total images were used as the training set, 10% (1,520 
images) for internal validation and fine-tuning, and 10% (1,520 
images) as the test dataset. The training dataset was subjected 
to a convolutional neural network, the YOLOv5 deep learning 
framework, which was specifically designed for real-time de-
tection with an inter-frame space greater than 25 frames per 
second.22 Supplementary Table 1 provides a detailed description 
of the still images used in the model. 

The Deep-GI model achieved 95% sensitivity, 92% specificity, 
86% positive predictive value, 97% negative predictive value, and 
91% accuracy, using still images from the test dataset (Table 1).  

Performance evaluation  
The performance of the Deep-GI model was evaluated using 
colonoscopy videos. The PDR was compared with that of the 
trainees, who included five second-year GI fellows with at least 
150 colonoscopies performed as the baseline. The performance 
of the Deep-GI model was also compared to that of a previously 
validated CADe system (CADe, CAD EYE) using colonoscopy 
videos in two aspects: (1) PDS and (2) FP alarm rate using vari-
ous FP thresholds. 

Colonoscopy videos were prospectively recorded for partici-

pants aged 50 to 75 years who underwent screening colonosco-
py at the King Chulalongkorn Memorial Hospital Endoscopy 
Excellence Center between September 2021 and January 2022. 
All procedures were performed by gastroenterology trainees 
with ADRs of ≥35%, under supervision using colonoscopes 
(ELUXEO 7000 system, EC 760ZP-V/L; Fujifilm Corp.). Pa-
tients with a history of CRC, incomplete colonoscopy for in-
flammatory bowel disease, familial polyposis syndrome, or a 
history of colonic resection were excluded. Verbal and written 
informed consent were obtained prior to the procedures. The 
inspection time was recorded during the withdrawal time, 
starting from cecal inspection and ending at colonoscope re-
moval from the anus. All colonoscopies were performed under 
a standard high-definition white light. IEE such as BLI and LCI 
were only permitted to characterize the polyp. During scope 
withdrawal, two colonoscopy videos were recorded simultane-
ously: one with a real-time automatic polyp detection system 
(CADe)-labeled video and another with an unlabeled raw video. 
Polypectomy videos were not included in the analysis. The un-
labeled video was processed using a Deep-GI model. The same 
unlabeled videos were also randomly distributed to five indepen-
dent second-year gastroenterology fellows, who were blinded to 
the endoscopic and pathological results, to be reviewed to note 
the number and timing of polyps detected on the screen. 

An alarm-tracing program was developed to detect AI-gen-
erated frames in the videos. The program was specifically 
designed to record the number and duration of the appearing 
bounding boxes regardless of the AI system. This program act-
ed as a “blinded” observer which allowed an objective and re-
liable measurement of the study outcome. Both the CADe and 
Deep-GI labeled videos were run through this alarm-tracing 
program to obtain computerized numbers and durations of the 

Table 1. Deep-GI developmental dataset and performance during internal validation 
Total images Polyp images Non-polyp images

Dataset (n) 12,148 4,609 7,539
 Training dataset 12,148 4,609 7,539
 Validating dataset 1,520 577 943
 Testing dataset 1,520 577 943
 Total 15,188 5,763 9,425
Performance of Deep-GI on still images (%)
 Sensitivity 94.96
 Specificity 91.73
 Positive predictive value 86.42
 Negative predictive value 97.05
 Accuracy 90.69

Tiankanon et al. Performance of two AI colonoscopy models
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AI-generated blue bounding boxes (Fig. 1). 
For expert confirmation or gold standard, three expert gas-

troenterologists (KT, SA, and PM) independently reviewed 
both AI-labelled videos. Each expert documented the number 
and timing of polyps that appeared on the screen as well as their 
morphology (sessile, pedunculated, or flat) and size (0.5, 0.5–1, 
or >1 cm). Pathological reports or the reviewers’ consensus (in 
cases where the polyps were not removed) were used to classify 
them as adenomatous or hyperplastic. 

A true positive (TP) result was defined as a polyp detected 
for any length of time by the trainees or AI and confirmed by 
expert reviewers to be a polyp (Fig. 1). A false negative result 
was defined as a polyp detected by expert reviewers but not by 
trainees or the AI system. A FP was defined as any area detected 
by the trainees or the AI system that was not determined to be 
a polyp by the reviewers. Per-polyp false positivity was used in 
the study rather than per-frame false positivity for the results to 
be more clinically relevant. If two frames of the same polyp were 
deemed to be FP, it was counted as one. Different thresholds for 
FP alerts were determined based on the length of time for which 
the system continuously tracked the appearance of FP bounding 
boxes. The different thresholds of ≥0.5, ≥1, ≥1.5, and ≥2 seconds 
were adjusted. Finally, the outcomes of all three groups were 
compared against the gold standard from expert reviewers. 

Study-outcomes measurement 
Therefore, the primary goal of this study was to compare the 
polyp detection performance of the Deep-GI model with that 
of endoscopy trainees and CADe by evaluating the overall PDS 
and polyp miss rate (PMR). The secondary outcomes were ad-
enoma detection sensitivity (ADS), adenoma miss rate (AMR), 
and number of FP alarms per colonoscopy using various FP 
thresholds.  

Statistical analysis  
According to previous research data on the PDS of recorded 
trainees, Deep-GI, and published CADe,21 at 80% power and 
a 2-sided significance level of 0.05, at least 159 videos were re-
quired to detect PDS differences. To account for 10% potential 
exclusions or dropouts, the overall participant enrollment goal 
was 170. 

Analyses were performed using IBM SPSS software ver. 22.0 
(IBM Corp.). Categorical variables are expressed as proportions 
and percentages. Continuous variables are expressed as means 
and standard deviations. Data between groups were compared 
using the chi-square test and unpaired t-test, where appropri-
ate. Statistical significance was set at p<0.05. The diagnostic 
performances of the AI-assisted polyp detection models were 
expressed in terms of the PDR, PMR, and number of FP alarms 
per colonoscopy. 

Ethical statement 
The study protocol was approved by the Institutional Review 
Board of the Faculty of Medicine, Chulalongkorn University, 
Bangkok, Thailand (IRB number: 56/65). Prior to all proce-
dures, verbal and written informed consent were obtained. 

RESULTS 

A total of 170 colonoscopies were performed on 68 males 
(40.0%) and 102 females (60.0%), with a mean age of 62.7±8.4 
years. The average withdrawal time was 7.8±2.7 minutes, and 
the average Boston bowel preparation scale (BPPS) score for 
bowel preparation quality was 8.6±0.63 points. Of these, 137 
patients (80.6%) had at least one polyp. The mean number of 
polyps detected during colonoscopy was 2.95. A total of 501 
polyps were found, of which 262 (52.3%) were adenomas and 

Fig. 1. Example of an adenomatous polyp detected by AI models. (A) A diminutive sessile polyp detected by the computer-aided polyp de-
tection (CADe) model; (B) the same polyp detected by the Deep-GI model; (C) and (D) the alarm-tracing program detecting the bounding 
boxes of CADe and Deep-GI, respectively.

AA BB CC DD
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239 (47.7%) were hyperplastic polyps. 
For adenomatous polyps, majority of the adenomas were <0.5 

cm in size (67.9%, n=178). As for the polyp sizes of 0.5 to 0.9 
cm, half of them presented sessile morphology (54.0%, n=34). 
Twenty-one polyps (8%) were >1 cm. The majority of the large 
polyps were pedunculated (52.4%; n=11). Most of the hyper-
plastic polyps discovered were <0.5 cm in size (96.7%, n=231). 
There were also no hyperplastic polyps >1 cm in size or with a 
pedunculated shape (Table 2). 

Polyp detection performance 

1) Overall polyp detection 
Out of 501 polyps, 498 (99.4%) were detected using Deep-GI. 
CADe and endoscopist trainees detected 428 (85.4%) and 334 
(66.7%) polyps, respectively (p<0.01 for all comparisons). Com-
pared to endoscopist trainees and the validated CADe model, 
Deep-GI demonstrated a significantly higher PDS with a lower 
PMR (Table 3). 

2) Adenoma detection 
Deep-GI detected 261 (99.6%) adenomas, whereas CADe and 
trainees detected 253 (96.6%) and 231 (88.2%) adenomas out of 
262 adenomas, respectively (p<0.01 for all comparisons). Deep-
GI demonstrated a significantly higher ADS with a lower AMR 
than that of trainees and the validated CADe model (Table 3). 

3) Missed polyps 
Out of 501 polyps detected by the experts, Deep-GI showed the 
lowest PMR (0.6%, n=3) compared to that of CADe (14.6%, 
n=73) and trainees (33.3%, n=167), respectively (p<0.01 for all 
comparisons). Considering only adenomatous polyps, Deep-GI 
also showed the lowest AMR (0.4%, n=1) compared with that 

Table 2. Baseline characteristics of 170 patients, procedural details, 
and polyps recorded 
Characteristic Value
Baseline characteristic (n=170)
 Age (yr) 62.7±8.4
 Sex (male) 68 (40.0)
 Boston bowel preparation scale 8.6±0.63
 Withdrawal time (min) 7.8±2.7
 Total polyps 501
Polyp characteristic (n=501)
 Adenoma (262, 52.3%)
  <0.5 cm 178 (67.9)
   Sessile shape 178
  0.5–1 cm 63 (24.0)
   Sessile 34
   Pedunculated 13 
   Flat 16 
  >1 cm 21 (8.0)
   Sessile 3
   Pedunculated 11
   Flat 7
 Hyperplastic (239, 47.7%)
  <0.5 cm 231 (96.7)
   Sessile shape 231
  0.5–1 cm 8 (3.3)
   Sessile 4
   Pedunculated 0
   Flat 4
  >1 cm 0
Values are presented as mean±standard deviation or number (%).

of CADe (3.4%, n=9) and endoscopist trainees (11.8%, n=31), 
respectively (p<0.01 for all comparisons).  

Deep-GI missed one sessile adenoma >1 cm (Fig. 2) and 
two diminutive hyperplastic polyps, whereas the CADe model 
missed nine adenomas (including the one missed by Deep-
GI) and 64 hyperplastic polyps. The majority of polyps missed 

Table 3. Comparison of diagnostic performance between Deep-GI, CADe, and endoscopist trainees in 510 colonoscopy videos from 170 pro-
cedures 

Diagnostic performance Deep-GI CADe p-valuea) Trainees p-valueb)

Overall polyp detection (n=501)
 Polyp detection sensitivity 498 (99.4) 428 (85.4) <0.01 334 (66.7) <0.01
 Polyp miss rate 3 (0.6) 73 (14.6) <0.01 167 (33.3) <0.01
Adenoma detection (n=262)
 Adenoma detection sensitivity 261 (99.6) 253 (96.6) 0.039 231 (88.2) <0.01
 Adenoma miss rate 1 (0.4) 9 (3.4) 0.043 31 (11.8) <0.01

Values are presented as number (%).
CADe, computer-aided polyp detection.
a)Comparison of Deep-GI to validated CADe. b)Comparison of Deep-GI to general endoscopists.

Tiankanon et al. Performance of two AI colonoscopy models
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Fig. 2. An adenomatous polyp >1 cm (within the red box) that was 
missed by Deep-GI, computer-aided polyp detection (CADe), and 
the trainees.

by both AI models were <0.5 cm in size. Over 90% of polyps 
missed by trainees were diminutive (≤5 mm) and most of these 
polyps (81.4%) were non-neoplastic. The characteristics of all 
the missed polyps are shown in Supplementary Table 2. 

FP alarm rates 
Deep-GI displayed 59,350 FP bounding boxes, whereas CADe 
displayed 106,042 FP bounding boxes in 170 videos. On com-
paring the two AI systems, Deep-GI showed lower FP alarm 
rates per colonoscopy (349±169 vs. 624±468, p<0.01). After 
different FP threshold adjustments, Deep-GI had significant-
ly lower FP alarm rate per colonoscopy than that of CADe 
at ≥0.5-second and ≥1-second FP thresholds (12.1±10.3 vs. 
22.4±23.5, p<0.01 and 4.4±4.8 vs. 6.8±7.6, p<0.01; respectively). 
However, at a threshold of ≥1.5 and ≥2 seconds, the difference 
in FP alarm rates became non-significant and the PMR in-
creased to 10% to 25% (Table 4). 

DISCUSSION 

We discovered that when compared to trainees, the Deep-GI 
AI model had significantly higher PDS (88% vs. 99%) and ADS 
(67% vs. 99%), which is consistent with a recent meta-analysis 
that showed that AI can increase the polyp and adenoma de-
tection by as much as 50%.17 Although our study was designed 
to blind the subject trainees who reviewed the videos, it had an 
inevitable limitation in that the trainees had no direct interac-

tion with the AI systems and the effect of incorporating such 
a system on the trainees’ PDS and ADS could not be proven. 
However, our findings are strong surrogates, suggesting that AI 
models have a high potential to improve novice colonoscopy 
during training. 

One of the novelties of this study is the comparison between 
the newly developed AI model and commercially available 
systems. With a very high baseline PDS of colonoscopies per-
formed during the study period (>50%), we found that our 
newly developed AI model, Deep-GI, has a higher sensitivity in 
polyp detection than that of the commercially available CADe 
with a sensitivity of 99.4% vs. 85% at the FP threshold of ≥0.5 
second and 97.8% vs. 84.2% at the FP threshold of ≥1 second, 
respectively. When focusing on adenoma detection, the sensi-
tivity of Deep-GI was still higher than that of CADe at the FP 
thresholds of ≥0.5 second (99.6% vs. 96.2%) and ≥1 second 
(99.2% vs. 96.2%). Our results demonstrated that Deep-GI per-
formed better than the commercial AI model for overall polyp 
detection, including adenomas. 

Interestingly, only one sessile adenomatous polyp >1 cm was 
undetected by Deep-GI, CADe, and trainees. We suspect that 
this large polyp could not be detected for two reasons. First, 
the polyp was not clearly visible, as it was partially obscured 
by water and fecal debris, and second, this polyp appeared on 
the screen for only about 1.5 seconds before polypectomy was 
performed. Despite these challenges, highly experienced endos-
copists were able to detect this polyp during colonoscopy and 
during offline video assessment. 

While an AI system may help improve ADS, high FP alerts 
may unnecessarily prolong the procedure and increase physical 
fatigue for the endoscopist. Inevitably, a low FP alert results in 
lower sensitivity.19,23,24 Our findings highlight the effects of dif-
ferent FP thresholds on the number of FPs reported. Currently, 
there is no consensus on the optimal FP threshold for AI sys-
tems, and various definitions of FP threshold have been used in 
different CADe studies, ranging from >0.5 to >2 seconds, while 
some studies have not specified the definition of FP threshold 
at all.20,25-28 Previous study on another validated polyp detection 
deep learning AI model (Shanghai Wision AI Co., Ltd.) by 
Holzwanger et al. proposed ≥2 seconds as the most appropriate 
and practical threshold for defining FP for colon polyp detec-
tion.21 However, in our study, a 2-second threshold resulted in 
lower PDS and accuracy owing to a higher PMR. In contrast, 
a ≥1-second threshold provided the lowest PMR while main-
taining a low FP alarm. Therefore, we propose an optimum FP 
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threshold of 1 second for the Deep-GI and CADe models, as 
it provides sufficient time for bubbles or debris to be irrigated 
away and folds to flatten with insufflation, both of which are 
standard techniques during high-quality colonoscopy. The dif-
ferent optimal FP observed suggest that the optimal FP thresh-
old for each AI model may be different. However, we believe 
that a shorter threshold is preferred because the endoscopist 
does not need to stay in that position for too long. 

The strength of this study is that we included a large number 
of colonoscopy videos with a large number of polyps and ade-
nomas, rendering sufficient power to support the accuracy of 
our Deep-GI model in terms of PDS. This is the first study to 
compare and evaluate the diagnostic performance of two dif-
ferent CADe models in terms of PDS and the impact of various 
FP thresholds. In addition, we evaluated the impact of the time-
based definitions of both FP and AI alerts on TP; thus, a sensi-
tivity calculation could be performed accurately. 

However, our study has certain limitations. First, the Deep-

GI model was not used during real-time colonoscopy, and the 
benefit of this model in increasing polyp and adenoma detec-
tion was only analyzed using offline videos. A randomized con-
trolled trial comparing the two systems in real-time is needed to 
confirm these findings. Second, Deep-GI was developed, tested, 
and compared at a single center with no external validation 
cohort; thus, the superiority of polyp detection results could be 
due to overfitting or data homogeneity, given the training and 
testing in the same study population with the same equipment 
and endoscopists. Third, the CADe system cannot be applied 
to recorded videos and must be used only during real-time 
colonoscopy. As a result, the recorded videos may have been in-
fluenced by the CADe. Although all annotations were deleted, 
such as back-to-back colonoscopy, Deep-GI performed better 
by following and detecting mistakes in prior CADe guidance. 
In addition, all colonoscopies in this study were performed by 
endoscopists with high polyp and ADRs under an adequate 
colonoscopy withdrawal period. In addition, the quality of 

Table 4. Comparative analysis between Deep-GI and CADe using different thresholds for FP alerts 
Parameter Deep-GI (n=170) CADe (n=170) p-value
Total no. of FP alarms 59,350 106,042
FP per colonoscopy 349±169 624±468 <0.01
Comparative analysis using different thresholds
 Detection sensitivity (TP)
  For overall polyps (n=501)
   Thresholds
    ≥0.5 sec 498 (99.4) 426 (85.0) <0.01
    ≥1 sec 492 (98.2) 422 (84.2) <0.01
    ≥1.5 sec 453 (90.4) 380 (75.8) <0.01
    ≥2 sec 449 (89.6) 376 (75.0) <0.01
  For adenomatous polyps (n=262)
   ≥0.5 sec 261 (99.6) 252 (96.2) 0.027
   ≥1 sec 260 (99.2) 252 (96.2) 0.049
   ≥1.5 sec 254 (96.9) 248 (94.7) 0.293
   ≥2 sec 254 (96.9) 247 (94.2) 0.228
 FP alarm/colonoscopy
  For overall polyps (n=501)
   ≥0.5 sec 12.1±10.3 22.4±23.5 <0.01
   ≥1 sec 4.4±4.8 6.8±7.6 <0.01
   ≥1.5 sec 2±2.9 2.4±3.8 0.276
   ≥2 sec 1±1.9 1.1±2.2 0.654
  For adenomatous polyps (n=262)
   ≥0.5 sec 12.1±10.3 22.4±23.5 <0.01
   ≥1 sec 4.4±4.8 6.8±7.6 <0.01
   ≥1.5 sec 2±2.9 2.4±3.8 0.276
   ≥2 sec 1±1.9 1.1±2.2 0.654
Values are presented as mean±standard deviation or number (%).
CADe, computer-aided polyp detection; FP, false positive; TP, true positive.

Tiankanon et al. Performance of two AI colonoscopy models

223



bowel preparation was excellent in almost all the cases. We did 
not experience the setting of poor bowel preparation or subop-
timal scope withdrawal duration in most cases. In this regard, 
one advanced adenoma was missed in both AI models owing 
to debris coverage and a short appearance duration. There-
fore, the less-optimal setup may have caused overfitting in our 
model. Lastly, not all polyp results were based on histopatholo-
gy, and the Deep-GI capability in differentiating adenomatous 
vs. non-adenomatous polyps is beyond the scope of our study 
design, as the main objective of our study was polyp detection, 
while adenoma detection could be influenced by the propor-
tion of hyperplastic polyps and adenomas in the study popula-
tion. 

In conclusion, on comparing Deep-GI to a validated CADe, 
Deep-GI demonstrated higher overall PDR and ADR with a sig-
nificantly lower FP alarm at ≥0.5- and ≥1-second thresholds. The 
≥1-second threshold is optimum for Deep-GI model because it 
provides the lowest PMR and FP alarm rate. To overcome the 
potential for overfitting, further prospective real-time studies in-
volving community practitioners and trainees are required. 

Supplementary Material 

Supplementary Table 1. Details of the still images used for Deep-
GI development.

Supplementary Table 2. Characteristics of polyps missed by AI 

systems and endoscopy trainees.

Supplementary materials related to this article can be found on-
line at https://doi.org/10.5946/ce.2023.145. 
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