• Title/Summary/Keyword: CAC

Search Result 1,738, Processing Time 0.025 seconds

Evaluation of multi-lane transverse reduction factor under random vehicle load

  • Yang, Xiaoyan;Gong, Jinxin;Xu, Bohan;Zhu, Jichao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.725-736
    • /
    • 2017
  • This paper presents the two-, three-, and four-lane transverse reduction factor based on FEA method, probability theory, and the recently actual traffic flow data. A total of 72 composite girder bridges with various spans, number of lanes, loading mode, and bridge type are analyzed with time-varying static load FEA method by ANSYS, and the probability models of vehicle load effects at arbitrary-time point are developed. Based on these probability models, in accordance to the principle of the same exceeding probability, the multi-lane transverse reduction factor of these composite girder bridges and the relationship between the multi-lane transverse reduction factor and the span of bridge are determined. Finally, the multi-lane transverse reduction factor obtained is compared with those from AASHTO LRFD, BS5400, JTG D60 or Eurocode. The results show that the vehicle load effect at arbitrary-time point follows lognormal distribution. The two-, three-, and four-lane transverse reduction factors calculated by using FEA method and probability respectively range between 0.781 and 1.027, 0.616 and 0.795, 0.468 and 0.645. Furthermore, a correlation between the FEA and AASHTO LRFD, BS5400, JTG D60 or Eurocode transverse reduction factors is made for composite girder bridges. For the two-, three-, and four-lane bridge cases, the Eurocode code underestimated the FEA transverse reduction factors by 27%, 25% and 13%, respectively. This underestimation is more pronounced in short-span bridges. The AASHTO LRFD, BS5400 and JTG D60 codes overestimated the FEA transverse reduction factors. The FEA results highlight the importance of considering span length in determining the multi-lane transverse reduction factors when designing two-lane or more composite girder bridges. This paper will assist bridge engineers in quantifying the adjustment factors used in analyzing and designing multi-lane composite girder bridges.

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

Effect of rock flour type on rheology and strength of self-compacting lightweight concrete

  • Mazloom, Moosa;Homayooni, Seyed Mohammad;Miri, Sayed Mojtaba
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.199-207
    • /
    • 2018
  • With the development of concrete technology, producing concrete products that have the ability to flow under their own weights and do not need internal or external vibrations is an important achievement. In this study, assessments are made on using travertine, marble and limestone rock flours in self-compacting lightweight concrete (SCLC). In fact, the effects of these powders on plastic and hardened phases of SCLC are studied. To address this issue, concrete mixtures with water to cementitious materials ratios of 0.42 and 0.45 were used. These mixtures were made with 0 and 10% silica fume (SF) replacement levels by cement weight. To achieve lightweight concrete, lightweight expanded clay aggregate (Leca) with the bulk density of about $520kg/m^3 $was utilized. Also two kinds of water were consumed involving tap water and magnetic water (MW) for investigating the possible interaction of MW and rock flour type. In this study, 12 mixtures were studied, and their specific weights were in the range of $1660-1692kg/m^3$. To study the mixtures in plastic phase, tests such as slump flow, J-ring, V-funnel and U-box were performed. By using marble and travertine powders instead of limestone flour, the plastic viscosities and rheology were not changed considerably and they remained in the range of regulations. Moreover, SCLC showed better compressive strength with travertine, and then with marble rock flours compared to limestone powders. According to the results of the conducted study, MW showed better performance in both fresh and hardened phases in all the mixes, and there was no interaction between MW and rock flour type.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

Finite element model updating effect on the structural behavior of long span concrete highway bridges

  • Altunisik, A.C.;Bayraktar, A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.745-765
    • /
    • 2014
  • In this paper, it is aimed to determine the finite element model updating effects on the structural behavior of long span concrete highway bridges. Birecik Highway Bridge located on the 81stkm of Sanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The bridge consist of fourteen spans, each of span has a nearly 26m. The total bridge length is 380m and width of bridge is 10m. Firstly, the analytical dynamic characteristics such as natural frequencies and mode shapes are attained from finite element analyses using SAP2000 program. After, experimental dynamic characteristics are specified from field investigations using Operational Modal Analysis method. Enhanced Frequency Domain Decomposition method in the frequency domain is used to extract the dynamic characteristics such as natural frequencies, mode shapes and damping ratios. Analytically and experimentally identified dynamic characteristics are compared with each other and finite element model of the bridge is updated to reduce the differences by changing of some uncertain parameters such as section properties, damages, boundary conditions and material properties. At the end of the study, structural performance of the highway bridge is determined under dead load, live load, and dynamic loads before and after model updating to specify the updating effect. Displacements, internal forces and stresses are used as comparison parameters. From the study, it is seen that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %46.7 to %2.39 by model updating. A good harmony is found between mode shapes after finite element model updating. It is demonstrated that finite element model updating has an important effect on the structural performance of the arch type long span highway bridge. Maximum displacements, shear forces, bending moments and compressive stresses are reduced %28.6, %21.0, %19.22, and %33.3-20.0, respectively.

Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact

  • Das, Raj;Cleary, Paul W.
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.933-961
    • /
    • 2015
  • Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.

A Study on DNA Sequences and Mutation of Integrase Region of Korean-type Bovine Leukemia Virus (BLV) pol Gene

  • Kwon, Oh-Sik;Kang, Jung-Soon;Park, Hyun-Jin;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.10 no.1
    • /
    • pp.55-63
    • /
    • 2004
  • Bovine leukemia virus (BLV) is a causative agent for lymphoma disease in cattle including cows worldwide. BLV shares similar virion structure and characteristics with other retroviruses. The pol gene of the BLV genome produced reverse transcriptase (RT) and integrase (IN) for important roles for BLV genome integration into host cell chromosomes that is known to be coded in the 3' side of the BLV pol gene (one third portion). In this study, we have sequenced 978 bp in the 3' side of the BLV pol gene from BLV 10C3 in order to determine the BLV IN region of it. And we compared it to the nucleotide sequences of an Australian BLV isolate. As a result, nucleotide sequences of the IN region of the Korean-type BLV pol gene were mutated at a rate of 3.7%. We can confirm that the typical mutations are such as Arg (AGG) $\rightarrow$ Lys (AAG), Thr (ACG) $\rightarrow$ Met (ATG), Ile (ATT) $\rightarrow$ Val (GTT), Asn (ACC) $\rightarrow$ His (CAC), Phe (TTT) $\rightarrow$ Leu (TTG) and Asn (ACC) $\rightarrow$ Asp (GAC). From the analysis of the sequencing data, we were able to determine the zinc-finger-like "HHCC" motif in the amino terminus of BLV IN, that was H-$X_3$-H-$X_{25}-C-X_2$-C. It was also found the DD35E motif in the IN catalytic domain as D-$X_{56}$-D-$X_{35}$-E. It fits very well to the consensus sequences of retroviral IN as well as HHCC motif.

  • PDF

Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmHEC) in the presence of SDS

  • Tirtaatmadija, Viyada;Cooper-white, Justin J.;Gason, Samuel J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.189-201
    • /
    • 2002
  • The interaction between hydrophobically modified hydroxyethyl cellulose (hmHEC), containing approximately 1 wt% side-alkyl chains of $C_{16}$, and an anionic sodium dodecyl sulphate (SDS) surfactant was investigated. For a semi-dilute solution of 0.5 wt% hmHEC, the previously observed behaviour of a maximum in solution viscosity at intermediate SDS concentrations, followed by a drop at higher SDS concentrations, until above the cmc of surfactant when the solution resembles that of the unsubstituted polymer, was confirmed. Additionally, a two-phase region containing a hydrogel phase and a water-like supernatant was found at low SDS concentrations up to 0.2 wt%, a concentration which is akin to the critical association concentration, cac, of SDS in the presence of hmHEC. Above this concentration, SDS molecules bind strongly to form mixed micellar aggregates with the polymer alkyl side-chains, thus strengthening the network junctions, resulting in the observed increase in viscosity and elastic modulus of the solution. The shear behaviour of this polymer-surfactant complex during steady and step stress experiments was examined In great detail. Between SDS concentrations of 0.2 and 0.25 wt%, the shear viscosity of the hmHEC-polymer complex network undergoes shear-induced thickening, followed by a two-stage shear-induced fracture or break-up of the network. The thickening is thought to be due to structural rearrangement, causing the network of flexible polymers to expand, enabling some polymer hydrophobic groups to be converted from intra- to inter-chain associations. At higher applied stress, a partial local break-up of the network occurs, while at even higher stress, above the critical or network yield stress, a complete fracture of the network into small microgel-like units, Is believed to occur. This second network rupture is progressive with time of shear and no steady state in viscosity was observed even after 300 s. The structure which was reformed after the cessation of shear is found to be significantly different from the original state.

Selection of measurement sets in static structural identification of bridges using observability trees

  • Lozano-Galant, Jose Antonio;Nogal, Maria;Turmo, Jose;Castillo, Enrique
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.771-794
    • /
    • 2015
  • This paper proposes an innovative method for selection of measurement sets in static parameter identification of concrete or steel bridges. This method is proved as a systematic tool to address the first steps of Structural System Identification procedures by observability techniques: the selection of adequate measurement sets. The observability trees show graphically how the unknown estimates are successively calculated throughout the recursive process of the observability analysis. The observability trees can be proved as an intuitive and powerful tool for measurement selection in beam bridges that can also be applied in complex structures, such as cable-stayed bridges. Nevertheless, in these structures, the strong link among structural parameters advises to assume a set of simplifications to increase the tree intuitiveness. In addition, a set of guidelines are provided to facilitate the representation of the observability trees in this kind of structures. These guidelines are applied in bridges of growing complexity to explain how the characteristics of the geometry of the structure (e.g. deck inclination, type of pylon-deck connection, or the existence of stay cables) affect the observability trees. The importance of the observability trees is justified by a statistical analysis of measurement sets randomly selected. This study shows that, in the analyzed structure, the probability of selecting an adequate measurement set with a minimum number of measurements at random is practically negligible. Furthermore, even bigger measurement sets might not provide adequate SSI of the unknown parameters. Finally, to show the potential of the observability trees, a large-scale concrete cable-stayed bridge is also analyzed. The comparison with the number of measurements required in the literature shows again the advantages of using the proposed method.