• Title/Summary/Keyword: CA Algorithm

Search Result 226, Processing Time 0.031 seconds

Optimization of Extended UNIQUAC Parameter for Activity Coefficients of Ions of an Electrolyte System using Genetic Algorithms

  • Hashemi, Seyed Hossein;Dehghani, Seyed Ali Mousavi;Khodadadi, Abdolhamid;Dinmohammad, Mahmood;Hosseini, Seyed Mohsen;Hashemi, Seyed Abdolrasoul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.652-659
    • /
    • 2017
  • In the present research, in order to predict activity coefficient of inorganic ions in electrolyte solution of a petroleum system, we studied 13 components in the electrolyte solution, including $H_2O$, $CO_2$ (aq), $H^+$, $Na^+$, $Ba^{2+}$, $Ca^{2+}$, $Sr^{2+}$, $Mg^{2+}$, $SO_4$, $CO_3$, $OH^-$, $Cl^-$, and $HCO_3$. To predict the activity coefficient of the components of the petroleum system (a solid/liquid equilibrium system), activity coefficient model of Extended UNIQUAC was studied, along with its adjustable parameters optimized based on a genetic algorithm. The total calculated error associated with optimizing the adjustable parameters of Extended UNIQUAC model considering the 13 components under study at three temperature levels (298.15, 323.15, and 373.15 K) using the genetic algorithm is found to be 0.07.

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

Design and Implementation of High-Speed Certification Path Discovery on Enterprise PKI (Enterprise PKI에서의 고속 인증 경로 탐색 알고리즘의 설계 및 구현)

  • 유종덕;이주남;이구연
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.77-87
    • /
    • 2002
  • In the field of secure information systems including electronic commercials, public key infrastructure(PKI) is widely used for secure services. The more PKI domains are established, the more needs we required for cross-domain certifications. Furthermore, each country has many certificate authorities(CA) which requires more complex cross certification. We may need a fast algorithm in order to fad the possible certification paths. This will be more indispensible in the growing PKI systems. Thus, in this paper we design a high-speed certification path discovery algorithm and implement it. Also we investigate the feature of operation of the system.

The Evaluation of the dose calculation algorithm(AAA)'s Accuracy in Case of a Radiation Therapy on Inhomogeneous tissues using FFF beam (FFF빔을 사용한 불균질부 방사선치료 시 선량계산 알고리즘(AAA)의 정확성 평가)

  • Kim, In Woo;Chae, Seung Hoon;Kim, Min Jung;Kim, Bo Gyoum;Kim, Chan Yong;Park, So Yeon;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.321-327
    • /
    • 2014
  • Purpose : To verify the accuracy of the Ecilpse's dose calculation algorithm(AAA:Analytic anisotropic algorithm) in case of a radiation treatment on Inhomogeneous tissues using FFF beam comparing dose distribution at TPS with actual distribution. Materials and Methods : After acquiring CT images for radiation treatment by the location of tumors and sizes using the solid water phantoms, cork and chest tumor phantom made of paraffin, we established the treatment plan for 6MV photon therapy using our radiation treatment planning system for chest SABR, Ecilpse's AAA(Analytic anisotropic algorithm). According to the completed plan, using our TrueBeam STx(Varian medical system, Palo Alto, CA), we irradiated radiation on the chest tumor phantom on which EBT2 films are inserted and evaluated the dose value of the treatment plan and that of the actual phantom on Inhomogeneous tissue. Results : The difference of the dose value between TPS and measurement at the medial target is 1.28~2.7%, and, at the side of target including inhomogeneous tissues, the difference is 2.02%~7.40% at Ant, 4.46%~14.84% at Post, 0.98%~7.12% at Rt, 1.36%~4.08% at Lt, 2.38%~4.98% at Sup, and 0.94%~3.54% at Inf. Conclusion : In this study, we discovered the possibility of dose calculation's errors caused by FFF beam's characteristics and the inhomogeneous tissues when we do SBRT for inhomogeneous tissues. SBRT which is most popular therapy method needs high accuracy because it irradiates high dose radiation in small fraction. So, it is supposed that ideal treatment is possible if we minimize the errors when planning for treatment through more study about organ's characteristics like Inhomogeneous tissues and FFF beam's characteristics.

Development of One-to-One Shortest Path Algorithm Based on Link Flow Speeds on Urban Networks (도시부 가로망에서의 링크 통행속도 기반 One-to-One 최단시간 경로탐색 알고리즘 개발)

  • Kim, Taehyeong;Kim, Taehyung;Park, Bum-Jin;Kim, Hyoungsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.38-45
    • /
    • 2012
  • Finding shortest paths on time dependent networks is an important task for scheduling and routing plan and real-time navigation system in ITS. In this research, one-to-one time dependent shortest path algorithms based on link flow speeds on urban networks are proposed. For this work, first we select three general shortest path algorithms such as Graph growth algorithm with two queues, Dijkstra's algorithm with approximate buckets and Dijkstra's algorithm with double buckets. These algorithms were developed to compute shortest distance paths from one node to all nodes in a network and have proven to be fast and efficient algorithms in real networks. These algorithms are extended to compute a time dependent shortest path from an origin node to a destination node in real urban networks. Three extended algorithms are implemented on a data set from real urban networks to test and evaluate three algorithms. A data set consists of 4 urban street networks for Anaheim, CA, Baltimore, MD, Chicago, IL, and Philadelphia, PA. Based on the computational results, among the three algorithms for TDSP, the extended Dijkstra's algorithm with double buckets is recommended to solve one-to-one time dependent shortest path for urban street networks.

Binary Negative-Exponential Backoff Algorithm to Enhance The Performance of IEEE 802.11 WLAN (IEEE 802.11 무선랜의 성능 향상을 위한 Binary Negative-Exponential Backoff 알고리즘)

  • Ki, Hyung-Joo;Choi, Seung-Hyuk;Chung, Min-Young;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1229-1237
    • /
    • 2006
  • IEEE 802.11 has employed distributed coordination function (DCF) adopting carrier sense multiple access with collision avoidance (CSMA/CA). To effectively resolve collisions, DCF uses binary exponential backoff (BEB) algorithm with three parameters, i.e., backoff stage, backoff counter and contention window. If a collision occurs, stations involving in the collision increase their backoff stages by one and double their contention window sizes. However, DCF with BEB wastes wireless resource when there are many contending stations. Therefore, in this paper, to enhance the performance of wireless LAN, we propose binary negative-exponential backoff (BNEB) algorithm which maintains a maximum contention window size during collisions and reduces a contention window size to half after successful transmission of a frame without retransmissions. For IEEE 802.11, 802.11a and 802.11b standards, we also compare the performance of DCF with BEB to that with BNEB.

Realization of temperature compensation algorithm on portable radiation detection device based on Cortex-A9 (Cortex-A9 기반 휴대용 방사선 검출장치에서의 온도보상 알고리즘 구현)

  • Nam, Hye-Jin;Lee, Jon-Hwey;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2729-2735
    • /
    • 2013
  • Safety and security system have been internationally enhanced in a field of shipping logistics. Accordingly, techniques for safety and security have been studied steadily. The need of portable radiation detection device is increasing by the search of the container is enhanced. In this paper, we propose to study on the application of the temperature compensation algorithm to the platform to improve the accuracy and the realization of portable radiation detection device based on Cortex-A9. Analog board deforms signal output from the sensor. And Cortex-A9 platform analyzes the signal received and displays the results. Additionally we use the temperature compensation algorithm and thereby we ca look the same results even if the temperature changes.

A Hybird Antibody Model Design using Genetic Algorithm Scheme (유전 알고리즘 기법을 이용한 HA 모델 설계)

  • Shin, Mi-Yea;Jeon, Seoung-Heup;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.159-166
    • /
    • 2009
  • A nature immunity system responds sensitively to an external invasion with various functions in a lot of bodies, besides it there is a function to remember information to have been currently infected. we propose a hybrid model similar to immune system which combine with the antibody which applied genetic algorithm as select antibody and the arbitrary abnormal system call sequence that applied negative selection of a nature immunity system. A proposed model uses an arbitrary abnormal system Kol sequence in order to reduce a positive defect and a negative defect. Data used to experiment are send mail data processed UNM (University of New Maxico). The negative defect that an experiment results proposal model judged system call more abnormal than the existing negative selection to normal system call appeared 0.55% low.

A Study on about Implementation to Induction Cooker that load Turbo Inverter algorithm

  • Lee Min-Ki;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.136-139
    • /
    • 2001
  • The voltage resonating inverter has a defect in the switching element that works at 5 or 6 times higher than input voltage. Especially, it is very difficult to choose very high switching device for the 220[V]commercial voltage. In this paper, it is proposed the optimum method to realize the turbo 2000[W] power for induction cooker that is employed the 900[V] IGBT with decreasing operating voltage of the switching component by making the 220[V], 1500[W] inverter through the clamp mode voltage resonating inverter.

  • PDF

An Energy-Efficient Transmission Strategy for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 전송 방안에 관한 연구)

  • Phan, Van Ca;Kim, Jeong-Geun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2009
  • In this work we propose an energy-efficient transmission strategy for wireless sensor networks that operate in a strict energy-constrained environment. Our transmission algorithm consists of two components: a binary-decision based transmission and a channel-aware backoff adjustment. In the binary-decision based transmission, we obtain the optimum threshold for successful transmission via Markov decision process (MDP) formulation. A channel-aware backoff adjustment, the second component of our proposal, is introduced to favor sensor nodes seeing better channel in terms of transmission priority. Extensive simulations are performed to verify the performance of our proposal over fading wireless channels.

  • PDF