Browse > Article

Binary Negative-Exponential Backoff Algorithm to Enhance The Performance of IEEE 802.11 WLAN  

Ki, Hyung-Joo (성균관대학교 정보통신공학부)
Choi, Seung-Hyuk (성균관대학교 정보통신공학부)
Chung, Min-Young (성균관대학교 정보통신공학부)
Lee, Tae-Jin (성균관대학교 정보통신공학부)
Abstract
IEEE 802.11 has employed distributed coordination function (DCF) adopting carrier sense multiple access with collision avoidance (CSMA/CA). To effectively resolve collisions, DCF uses binary exponential backoff (BEB) algorithm with three parameters, i.e., backoff stage, backoff counter and contention window. If a collision occurs, stations involving in the collision increase their backoff stages by one and double their contention window sizes. However, DCF with BEB wastes wireless resource when there are many contending stations. Therefore, in this paper, to enhance the performance of wireless LAN, we propose binary negative-exponential backoff (BNEB) algorithm which maintains a maximum contention window size during collisions and reduces a contention window size to half after successful transmission of a frame without retransmissions. For IEEE 802.11, 802.11a and 802.11b standards, we also compare the performance of DCF with BEB to that with BNEB.
Keywords
IEEE 802.11; DCF; BNEB; Throughput; MAC delay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Bianchi, 'IEEE 802.11 saturation throughput analysis,' IEEE Commun. Lett., Vol. 2, No. 12, pp. 318-320, Dec. 1998   DOI   ScienceOn
2 D. H. Kim, S.-H. Choi, M.-H. Jung, M. Y. Chung, T.-J. Lee, Y. Lee, 'Performance evaluation of an enhanced GDCF under normal traffic condition,' in Proc. of IEEE TENCON'05, pp. 1560-1566, Nov. 2005
3 P. Chatzimisios, A. C. Boucouvalas, V. Vitsas, 'Effectiveness of RTS/CTS handshake in IEEE 802.11a wireless LANs,' IEEE Electon. Lett., Vol. 40, No. 14, pp. 915-916, July 2004   DOI   ScienceOn
4 IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)Specifications, ISO/IEC 8802-11:1999(E), Aug. 1999
5 Y. Kwon, Y. Fang, and H. Latchman, 'A novel MAC protocol with fast collision resolution for wireless LANs,' in Proc. IEEE INFOCOM'03, Vol. 2, pp. 853-862, Apr. 2003
6 A. Kanjanavapasti, B. Landfeldt, 'An analysis of a modified point coordination function in IEEE 802.11,' in proc. of PMRC 2003, Vol.. 2, pp. 1732 - 1736, Sep. 2003
7 G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function,' IEEE J. Select. Areas in Commun., Vol. 18, No. 3, pp. 535-547, Mar. 2000   DOI   ScienceOn
8 M. Y. Chung, M.-S. Kim, T.-J. Lee, Y. Lee, 'Performance evaluation of an enhanced GDCF for IEEE 802.11,' IEICE Trans. Commun., Vol. E88-B, No. 10, pp. 4125-4128, Oct. 2005   DOI
9 C. Wang, B. Li, and L. Li, 'A new collision resolution mechanism to enhance the performance of IEEE 802.11 DCF,' IEEE Trans. Veh., Techno., Vol. 53, No. 4, pp. 1235-1243, July 2004   DOI   ScienceOn
10 Y. Xiao, 'Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs,' IEEE Trans. Wireless Comm., Vol. 4, No 4, pp. 1506-1515, July 2005   DOI   ScienceOn
11 B. Raffaele, C. Marco, 'IEEE 802.11 Optimal performances: RTS/CTS mechanism vs. basic access,' Personal, indoor and mobile radio commun., the 13th IEEE International symposium on, Vol. 4, Sept. 2002
12 Y. Xiao, J. Rosdahl 'Throughput and delay limits of IEEE 802.11,' IEEE Commun. Lett.. Vol. 6, No 8, pp. 355-357, Aug. 2002   DOI   ScienceOn