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Abstract − In the present research, in order to predict activity coefficient of inorganic ions in electrolyte solution of a

petroleum system, we studied 13 components in the electrolyte solution, including H
2
O, CO

2
 (aq), H+, Na+, Ba2+, Ca2+,

Sr2+, Mg2+, SO
4
, CO

3
, OH-, Cl-, and HCO

3. 
To predict the activity coefficient of the components of the petroleum sys-

tem (a solid/liquid equilibrium system), activity coefficient model of Extended UNIQUAC was studied, along with its

adjustable parameters optimized based on a genetic algorithm. The total calculated error associated with optimizing the

adjustable parameters of Extended UNIQUAC model considering the 13 components under study at three temperature

levels (298.15, 323.15, and 373.15 K) using the genetic algorithm is found to be 0.07.
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1. Introduction

Optimization is the process of maximizing the desirable effi-

ciency. Optimization techniques implement this process by under-

taking some modifications on an initial assumption. To increase the

efficiency, optimization algorithms should apply operators on initial

points to produce new points within the search space for objective

function (to gradually move toward the optimal locations within this

space). In most of these search techniques (gradient method), the

algorithm proceeds from one point to another; in most cases, this

point-by-point approach ends up with optimization errors as they

converge to a local maxima. This drawback in optimization of non-

linear models leads to complex issues in the process of problem solv-

ing. To overcome this drawback [1-3] powerful algorithms such as

genetic algorithms (GA) are proposed. Electrolyte solutions are

listed among the most important aqueous systems in chemical indus-

tries, such as petroleum systems, due to the electrostatic and short-

range forces established between ions and solvent. Either high or low

concentration can lead to a non-ideal behavior in the electrolyte sys-

tems. In this regards it is necessary to investigate all inter-particle

forces. Due to the dependence of saturation index of mineral sedi-

ment formation in chemical systems, such as oil, on the mineral ions

of aqueous solutions, the importance of their activity factors increases;

thus it is being used in modeling thermodynamic prediction of min-

eral sediment formation during industrial processes. In studies pre-

dicting mineral sediments in electrolytic aqueous solutions, two

terms of thermodynamic equilibrium constant and activity factor of

water-soluble mineral components are considered. Mineral sedi-

ments are one of the main problems of oil facilities, and the forma-

tion of these deposits is one of the fundamental challenges the water

feeding systems confront. Depending on the conditions (changes in

water pressure and temperature alone or in combining two incompat-

ible water) during an operation when these mineral ions are dissolved

in the system (in a state of saturation), these deposits can cause major

problems by reducing the inner diameter of extraction pipe, increas-

ing repair and maintenance costs and causing overall decline in the

exploitation of oil of underground reservoirs. Therefore, considering

the importance of mineral sediment formation based on the nature

and activity of mineral ions in water systems of industrial operations

such as oil, in this research in order to predict activity factor of min-

eral ions in oil systems, 13 components of electrolytic solutions have

been studied: H
2
O, CO

2
 (aq, H+, Na+, Ba2+, Ca2+, Sr2+, Mg2+, SO

4
,

CO
3
, OH−, Cl− and HCO

3.
 Considering the satisfying efficiency of

the activity coefficient model of Extended UNIQUAC with its adjust-

able parameters optimized using genetic algorithms, we used this

method to investigate the activity coefficient of the ions in this study.

2. Theoretical Section

2-1. Extended UNIQUAC Model

Thomsen and Rasmussen (1999)[4] exercised Extended UNI-

QUAC model to study the electrolytic systems. Satisfying results were

†To whom correspondence should be addressed.
E-mail: hosseinhashmei@gmail.com
This is an Open-Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.



Optimization of Extended UNIQUAC Parameter for Activity Coefficients of Ions of an Electrolyte System using Genetic Algorithms 653

Korean Chem. Eng. Res., Vol. 55, No. 5, October, 2017

acquired for the solid-liquid, liquid-liquid and liquid-vapor equilib-

rium systems. The model is a combination of local composition

model (UNIQUAC) and Debye-Hückel term. UNIQUAC model was

suggested by Abrams and Prausnitz [5] to describe the Gibb's addi-

tional energy of the mixture, and includes two parts: one part of the

compound is related to the entropy of the system and is determined

according to the size and shape of molecule, the remaining part con-

siders the intermolecular forces involved in mixing enthalpy and

depends on molecular forces.

UNIQUAC equation has adjustable parameters and is expressed

as follows for the equilibrium of liquid-solid systems (multi-part) [4-6]:

GE = GE
combinatorial + GE

Residual + GE
Debye-HucKel (1)

(2)

In the upper equation, GE is Gibbs free energy, z is coordination

number with a value of 10; xi is mole fraction; ϕi is mole fraction;

φi is volume fraction and θi is the surface area fraction of ions in

the liquid-solid or liquid-vapor equilibrium system which is

expressed as:

(3)

(4)

where ri and qi are the volume and surface area parameters for

each ion. Also, for the residual term, the following equation holds:

(5)

(6)

where uii is the interaction energy between similar ions in an equi-

librium system of solid-liquid and vapor-liquid. uij is the interaction

energy between different ions in an equilibrium system. The interac-

tion energy is a function of temperature and is defined as:

(7)

where uij
0 and uij

t are two adjustable parameters for interaction

energy between the ions in the equilibrium system.

The Debye-Hückel contribution (to the Gibb's excess energy) of

the extended UNIQUAC model is given by the expression:

(8)

where M
w
 is the molar mass of water, x

w
 is the mole fraction of

water, A is a Debye-Hückel parameter, b is a constant value equal

to 1.5 ( )0.5, and I is the ionic strength.

(9)

In Eq. 9, zi is the charge and m
i
 is the molality (mol (kg H

2
O)-1) of

ion i. Considering the relationship between excess Gibbs free energy

and basic equations of thermodynamics, by differentiation of Equa-

tion 1 with respect to the mole fraction of different species, the activ-

ity coefficient for each ion is derived:

 (10)

ln γi =  lnγi
Residual + ln γi

combinatorial + ln γi
Debye-Hückel (11) 

To normalize Equation 11 for electrolyte system, considering

water existence (as a solvent) and its ions of solute, we have:

(12)

(13)

In Eq. 13, for yi
∞ (act ivity coefficient of ion at infinite dilution),

we have:

(14)

And finally, we have:

   (15)

2-2. Genetic Algorithms

First introduced by John Holland, the genetic algorithm is indeed a

special case of evolutionary algorithm. It only requires some infor-

mation about the quality of generated solutions using each set of variables,

whereas some other optimization techniques require detailed informa-

tion and recognition of the problem structure and variables [7,8].

As a numerical optimization technique, genetic algorithms consid-

ers a set of points within the solution space and searches different

points across this space at each iteration. This algorithm works with-

out any limitation regarding the function to be optimized (e.g., differ-

entiability) and, in the process of searching for a solution, it only

requires the evaluation of the objective function at different points.

According to these features genetic algorithms can be considered as

a reliable technique in case of different linear and non-linear problems.

In each iteration, each string in the set of available strings will be

decoded and its value is evaluated using the objective function.

Based on the evaluated values, a fitness value is assigned to each

string. This fitness value determines the probability for each string to

be selected among the population of the strings.According to the

selection probabilities, a set of strings is selected. By applying genetic

operators on the selected strings, new strings are selected to replace

some of the strings from the initial population; this is done to keep
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the number of strings constant at different iterations. In genetic algo-

rithms, not only genetic operators search for new points in the solu-

tion space at each iteration, but also the selection process searchs the

regions within the solution space where the statistical average of the

objective function considered by the user is higher in value [8,9]. In

genetic algorithms, using strings of either constant or variable lengths,

a set of design variables is coded, with each string representing a

solution point in computational search space.

These algorithms begin with producing a generation where a so-

called “initial population” is generated either selectively or randomly.

The existing population is selected according to the fitness of each

individual in the population for the next generation. Thereafter, genetic

operators, such as selection, crossover or mutation, are applied and

finally a new population is established. Consequently, new genera-

tions replace older ones and the cycles continue until a solution is

reached [8-10]. Theh genetic algorithm does not require detailed

information about the problems under study. Considering that its

decisions are principally made randomly, all possible solutions are

achievable theoretically. Among other strengths of genetic algorithm,

one can refer to the following [8-11]:

1. It does not need to calculate derivatives of functions.

2. It can undertake the optimization process using either continu-

ous or discrete variables.

3. It can undertake the optimization process using a large number

of variables.

4. It is capable of obtaining several solutions at the same time.

5. It is applicable on sets of solutions.

Many researchers have made use of genetic algorithms to solve

complex linear or non-linear engineering and chemical problems and

issues, including Agrawal et al. [12] (in optimizing low-density

polyethylene reactor), Cao et al. [13] (in optimizing the minimum

consumption of fresh water), Elliot et al. [14] (in optimizing aviation

fuel combustion), Jezowski et al. [15] (in optimizing retrofitting

thermal transducer) and Masoori et al. [16] (in optimizing reaction

rate in reactive systems), and the results demonstrate the efficiency

of using genetic algorithms in optimization and objective function

problems. System problems and industrial and chemical process

optimization are among the other usages of genetic algorithms as

stated by Till et al. [17], Young et al. [18] and Lepar et al. [19].

Fig. 1 provides a flowchart of optimization and calculation of

activity coefficient of ions in a petroleum system (under solid/liquid

equilibrium) using genetic algorithm. According to this flowchart,

we begin with calling three constant terms, R, temperature varia-

tions, and initial concentration in molality. Since the activity coeffi-

cient model of Extended UNIQUAC is calculated based on molar

ratios, the initial concentration should be unit-converted from molality to

molar ratio. In Extended UNIQUAC model, three important parame-

ters comprise the main axis of the model: u with all of them being

optimizable and adjustable. However, the parameter u is more

important than the others due to its dependence on temperature con-

Table 1. Initial Concentration values for calculation of activity coefficient 

Components of 

Electrolytic system 

Initial concentration

(molality) 

Activity Coeeficient at 

298.15 k 

Activity Coeeficient at

 323.15 k 

Activity Coeeficient at 

373.15 k 

H2O 55.5 0.8506 0.8507 0.8554

CO2(aq) 0.00867 1.8095 1.8091 1.8088

H+ 0.00401 1.9810 1.3059 0.9719

Na+ 3.14 0.7263 0.7373 0.6649

Ba2+ 0.000112 0.1510 0.1326 0.0793

Ca2+ 0.311 0.4019 0.3199 0.1876

Sr2+ 0.0172 0.3578 0.2679 0.1312

Mg2+ 0.0981 0.6378 0.4617 0.2359

OH− 2.96E-12 0.3631 0.3471 0.2818

Cl− 4.05 0.9317 0.9327 0.8462

SO4
2− 0.00406 0.0233 0.0272 0.0227

CO3
2− 2.92E-13 0.0160 0.0138 0.0052

HCO3 0.0113 0.7098 0.7218 0.5851

Fig. 1. A flowchart for the optimization process of the activity coeefi-

cient of inorganic ions using Extended UNIQUAC model based

on Genetic Algorithm.
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ditions. The three parameters u were used in the optimization algo-

rithm and then, the activity coefficient was calculated in molar ratio,

and once unit-converted to molality, it was fed into a trial and error loop.

The optimization process stops as soon the error satisfies the pre-

defined error criterion and the results are printed. The computation

process continues until the error criterion is met.

3. Data Used in this Study

In this research, in order to investigate activity coefficient of ions

in a petroleum system, the activity coefficient model of Extended

UNIQUAC was studied. The adjustable parameters of this model

were optimized according to the equilibrium concentration and activity

coefficient (according to Pscalsim1 Software of The Research Insti-

tute of Petroleum Industry of Iran) presented in Table 1.

4. Results and Discussion

4-1. Results of parameter optimization of the model

The process denoted in the flowchart in Fig. 1 was performed on

the data. After running the application for the equilibrium concen-

trations presented in Table 1 and temperature variations of 298.15,

323.15, and 373.15 K, the error equation ( ) rep-

resents a total calculated error equal to 0.07. Fig. 2 shows the trend

of GA iterations as the optimization process continued to reach a

desirable total error (at three temperature levels of 298.15, 323.15,

and 373.15 K). Table 2 represents optimal values of the parameters

r and q. Tables 3 and 4 represent the values of uo and ut, respec-

tively.

In Figs. 3~5, the trend of the GA iteration is represented for the

13 components in the electrolyte solution including water, dis-

solved carbon dioxide, hydrogen, sodium, barium, calcium,

strontium, magnesium hydroxide, chloride, sulfate, carbonate

and bicarbonate at three different temperatures (298.15, 323.15,

and 373.15 K).

gRef gcal–( )
n 2

k 0=∑

Table 2. Optimization of parameters r and q for UNIQUAC equation

fitted to experimental data [6,20]

Electrolyte solution components r q

H2O 0.92 1.4

CO2 0.75 2.45

H 0.14 0.1E-15

Na 1.4 1.2

Ba 15.67 14.48

Ca 3.87 1.48

Sr 7.14 12.89

Mg 5.41 2.54

OH 9.4 8.88

Cl 10.39 10.2

SO4 12.79 12.44

CO3 10.83 10.77

HCO3 8.08 8.68

Fig. 2. Calculation of total error associated with the optimization of

activity coefficient of ions in electrolyte solution of Extended

UNIQUAC model at three temperatures of 298.15, 323.15,

and 373.15 K and the pressure of 1 bar by implementing

Genetic Algorithms in Matlab Software (reference activity

coefficient, activity coefficient of inorganic ions in Pscalsim

Software).

Table 3. uo
ij = uo

ji parameter of energy interaction between ions for aqueous electrolyte systems in UNIQUAC equation

Solution components H2O CO2 H Na Ca Ba Sr mg OH Cl So4 CO3
2− Hco3

−

H2O 0

CO2(aq) 778.4 0

H 1106.6 1954.4 0

Na 1655.3 1816.93 1260.2 0

Ca 1320.01 2175.9 1535.3 1248.4 0

Ba 1253.3 1434.6 1076.25 1339.9 2309.9 0

Sr 1556.8 1610.7 2003.3 1679.7 1583.1 1611.6 0

Mg 1400.94 1576.4 851.1 1304.02 1159.4 1262.4 1603.7 0

OH 1274.7 1843.04 562 1684.2 1446.7 1502.3 1639.4 216.848 1283.2

Cl 1056.9 2215.2 1368.7 1528.2 1458.1 1585.25 1568.8 65.83 1550.6 1131.2

So4 1527.5 1618 877.6 1432.8 822.6 1290.2 732.1 161.3 1920.9 1328.5 1370.9

Co3
2− 1846.8 1623.4 1835.4 1321.8 1755.7 1168.2 994.35 1589.9 1952.6 1278.2 1657.6 1693.4

HCO3
− 2000 2222 2233 1333 1590 2500 3100 1991 2001 1223 2876 2223 2099

1Pars Scale Simulator
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4-2. Comparing the results of genetic algorithms with other

algorithms

Fig. 6 provides a comparison between the optimization of Extended

UNIQUAC model based on three algorithms: Imperialist Competi-

tive Algorithm (ICA) [21], Particle Swarm Optimization Algorithm

(PSO) [22-23] and Artificial Bee Colony Algorithm (ABC) [24-26].

Based on the flowchart in Fig. 1, the associated error with the optimi-

zation of the parameters of the considered model in this research

using IC, PSO and ABC algorithms was found to be 0.054, 0.1045,

and 0.089, respectively. Whereas, the associated error with the appli-

cation of the proposed GA in the present research was 0.07, empha-

sizing superior quality and accuracy of the genetic algorithms compared

to the aforementioned algorithms.

4-3. Comparing the optimized theoretical model with exper-

imental results

Fig. 7 compares solubility predictions of three electrolyte systems

Table 4. ut
ij  

= ut
ji parameter of energy interaction between ions for aqueous electrolyte systems in UNIQUAC equation

Solution components H2O CO2 H Na Ca Ba Sr mg OH Cl So4 CO3
2− Hco3

−

H2O 0.0001

CO2(aq) 2.01 0.002

H −5.66 −2.06 0.0012

Na 1.9 −2.83 5.001 0.00203

Ca 5.81 −6.03 4.28 −0.062 0.032

Ba 24.75 −6.2523 −6.624 1.47 2.63 0.0001

Sr 8.4 1.9343 4.34 −4.5 −2.88 6.97 0.0011

Mg 7.97 −4.711 −2.23 5.7 4.73 12.4 5.62 0.0025

OH −1.97 4.75 −4.02 −3.27 3.95 5.96 1.35 7.9 1.54

Cl −2.95 −2.04 −5.411 −1.46 9.16 0.93 −5.4 6.77 −5.2 7.3

So4 −2.64 1.34 −5.2 −2.463 −1.069 −0.54 1.25 2.44 14.98 2.44 6.7

Co3
2− −6.54 −6.25 0.004 2.5113 7.64 6.59 −4.5 0.03 −0.4 7.7 −6.56 −0.46

HCO3
− 2 3.1 −2.3 1.3 −1.9 2.5 3.1 1.91 1 1.23 2.6 2.3 2.9

Fig. 3. Optimization of activity coefficient of components of electro-

lyte solution using genetic algorithms (GA) at 298.15 K.

Fig. 4. Optimization of activity coefficient of components of electro-

lyte solution using genetic algorithms (GA) at 323.15 K.
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at the constant pressure of 1 bar and two different temperatures of

323 and 368 K using the theoretically optimized model in this research

to experimental results. According to the results of Fig. 7, solubility

of barium sulfate at 323 K increases as does the concentration of

sodium chloride. This is also true for the solubility of strontium sul-

fate in presence of magnesium chloride and calcium chloride at 368 K,

as the increase in the concentration of magnesium chloride and cal-

cium chloride leads to an increase in the concentration of strontium

sulfate. Comparing the results demonstrated in Fig. 7 emphasizes that

the optimized model in this research is significantly acceptable.

5. Conclusion

Considering the efficiency of the activity coefficient model of

Extended UNIQUAC with optimized parameters was studied to pre-

dict activity coefficient of inorganic ions in petroleum systems (under

solid-liquid equilibrium). The parameters of Extended UNIQUAC

model were optimized by using genetic optimization algorithm. To

apply trial and error on the results, the Pscalsim Software released by

Research Institute of Petroleum Industry (RIPI) was used as the compar-

ison reference. The total error calculated for the 13 ions under three

temperatures of 298.15, 323.15, and 373.15 K using the genetic algo-

rithm was found to be 0.07, and the iteration trend of the algorithm

was reported for the 13 components of the system under study at three

temperatures of 298.15, 323.15, and 373.15 K. The results obtained

using the genetic algorithm demonstrate the importance and priority

of exploiting the optimized Extended UNIQUAC model in case of

investigating saturation index of inorganic precipitates. 

Fig. 5. Optimization of activity coefficient of components of electro-

lyte solution using genetic algorithms (GA) at 373.15 K.

Fig. 6. Comparison between the optimization of Extended UNI-

QUAC model based on three algorithms: imperialist com-

petitive (a) Particle Swarm Optimization (b) and Artificial

Bee Colony (c).
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