• Title/Summary/Keyword: C6 Glial Cells

Search Result 72, Processing Time 0.024 seconds

Effect of Allopurinol on Methylmercuric Chloride-Induced Cytotoxicity in $C_6$ Cultured Glioma Cells

  • Oh, Yong-Leol;Son, Byoung-Kwan
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.451-455
    • /
    • 2006
  • It is demonstrated that inorganic mercury has cytotoxic effect on glial cells. Recently, oxygen radicals is involved in methylmercuric chloride (MMC)-induced cytotoxicity. But, the toxic mechanism of MMC is left unknown. The purpose of this study was to examine the cytotoxicity of MMC on $C_6$ glioma cells. The cytotoxicy was measured by cell viability using XTT assay in $C_6$ glioma cells. Colorimetric assay is regarded as a very sensitive screening method for the determination of the cell viability on various agents. In this study, MMC decreased cell viability according to the dose- and time dependent manners after $C_6$ glioma cells were grown with various concentrations of MMC for 48 hours. In the protective effect of allopurinol on MMC-induced cytotoxicity, allopurinol was effective in the prevention of MMC-induced cytotoxicity in these cultures. These results suggest that MMC has highly cytotoxic effect on $C_6$ glioma cells by the decrease of cell viavility, and free radical scavenger such as allopurinol was effective on organic mercury-induced cytotoxicity in these cultures.

  • PDF

Effects of Tianwangbuxin-dan, Wendan-tang, Guipi-tang on the expression of MT1 and MT2 melatonin receptors in C6 glial cells (천왕보심단(天王補心丹), 온담탕(溫膽湯), 귀비탕(歸脾湯)이 멜라토닌 수용체 발현에 미치는 영향)

  • Cho, Yun-Song;Kim, Bo-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.2
    • /
    • pp.103-123
    • /
    • 2010
  • Objectives : This study was to investigate the effect of several herbal prescriptions such as Tianwangbuxindan qu zhusha, Tianwangbuxindan, Wendantang, Guipitang on the level of $MT_1$ and $MT_2$ melatonin receptors in C6 glial cells. Methods : For this study, we exposed of C6 cells to several herbal prescriptions resulted in non-cytotoxic in various dose as measured by MTT assay, trypan blue count, morphology change and DAPI stain. Results : Tianwangbuxindan qu zhush and Tianwangbuxindan induced the levels of $MT_1$ melatonin receptor expression in a dose-dependent manner without altering the level of $MT_2$ melatonin receptor expression. However, the treatment with Wendantang, Guipitang don't effect of $MT_1$ and $MT_2$ melatonin receptor expression. Conclusions : This results suggest that Tianwangbuxindan can be a promising the regulation of melatonin receptor synthesis, and further studies will be needed to clarify the mechanism.

Protective role of oligonol from oxidative stress-induced inflammation in C6 glial cell

  • Ahn, Jae Hyun;Choi, Ji Won;Choi, Ji Myung;Maeda, Takahiro;Fujii, Hajime;Yokozawa, Takako;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Natural products or active components with a protective effect against oxidative stress have attracted significant attention for prevention and treatment of degenerative disease. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from Litchi chinensis Sonn. We investigated the protective effect and its related mechanism of oligonol against oxidative stress. MATERIALS/METHODS: Oxidative stress in C6 glial cells was induced by hydrogen peroxide ($H_2O_2$) and the protective effects of oligonol on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) synthesis, and mRNA expression related to oxidative stress were determined. RESULTS: Treatment with oligonol inhibited NO and ROS formation under cellular oxidative stress in C6 glial cells. In addition, it recovered cell viability in a dose dependent-manner. Treatment with oligonol also resulted in down-regulated mRNA expression related to oxidative stress, nuclear factor kappa-B (NF-${\kappa}B$) p65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the control group treated with $H_2O_2$. In particular, expression of NF-${\kappa}B$ p65, COX-2, and iNOS was effectively reduced to the normal level by treatment with $10{\mu}g/mL$ and $25{\mu}g/mL$ of oligonol. CONCLUSIONS: These results indicate that oligonol has protective activity against oxidative stress-induced inflammation. Oligonol might be a promising agent for treatment of degenerative diseases through inhibition of ROS formation and NF-${\kappa}B$ pathway gene expression.

Effects of several herbs on the expression of MT1 and MT2 melatonin receptors in C6 glial cells (수종의 한약재 열수추출물이 멜라토닌 수용체 발현에 미치는 영향)

  • Kim, Bo-Ra-Mi;Yang, Dong-Ho;Kim, Bo-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.15-36
    • /
    • 2007
  • Objective : This study was to investigate the effects of several herbs on the levels of MT1 and MT2 melatonin receptors Methods: It was investigated the effects of several herbs such as WEDL, WEZV, WEFO, WEOC on the levels of MT1 and MT2 melatonin receptors using C6 glial cell model. ${\beta}-estradiol$ treatment, as a positive control group, under non-cytotoxic condition. Results : 1. The water extracts of Dimocarpus long (WEDL) induced the levels of MT2 melatonin receptor expression in a concentration-dependent manner without altering the levels of MT1 melatonin receptor expression. 2. The treatment with the water extract of Zizyphus vulgaris (WEZV) induced the levels of MT1 melatonin receptor expression and the levels of MT2 melatonin receptor expression was not affected. 3. The levels of MT1 as well as MT2 melatonin receptor expression were markedly up-regulated in the water extract of Fossilia ossis (WEFO) and the water extract of Ostreae caro (WEOC)-treated C6 cells. 4. The combination treatment with WEDL and WEZV induced not only the levels of MT1 melatonin receptor expression but also MT2 melatonin receptor expression, but the synergic effects of the combination treatment with WEFO and WEOC were not detected in C6 cells. Conclusion : The study provides important new insights into the possible mechanisms on the regulation of melatonin receptor synthesis by WEDL, WEZV, WEFO and WEOC.

  • PDF

Effects of Flavonoids and Their Glycosides on Oxidative Stress in C6 Glial Cells (Flavonoids 및 그 배당체의 산화적 스트레스에 대한 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1371-1377
    • /
    • 2019
  • Oxidative stress induced by the over-production of reactive oxygen species (ROS) in the brain is the most common cause of neurodegenerative diseases such as Alzheimer's. In the present study, we investigated the protective effects of flavonoids and their glycosides, namely kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-β-D-glucoside, against H2O2-induced oxidative stress in the C6 glial cells. The H2O2-treated glial cells exhibited decreased cell viability and increased ROS production when compared with normal cells. However, cells treated with each of the four flavonoids/glycosides demonstrated significantly increased viability and suppressed ROS production when compared with the H2O2-treated control group. These results indicate that flavonoids/glycosides attenuate oxidative stress induced by H2O2 in C6 glial cells. To confirm the protective molecular mechanisms, we measured pro-inflammatory factors such as inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β. H2O2 treatment was seen to elevate these factors and decrease IκB-α in the C6 glial cells, while the flavonoids/glycosides induced a down-regulation of the pro-inflammatory factors and increased IκB-α, indicating a neuroprotective effects through attenuation of the inflammation. In particular, quercetin and its glycoside showed a higher neuroprotective effect than the kaempferol treatments. These results suggest that these flavonoids and their glycosides could be promising therapeutic agents for neurodegenerative diseases via the attenuation of oxidative stress.

In Vitro Radical Scavenging Effect and Neuroprotective Activity from Oxidative Stress of Petasites japonicus (머위 분획물의 In Vitro 라디칼 소거능 및 신경세포의 산화적 스트레스 보호 효과)

  • Wang, Qian;Lee, Ah Young;Choi, Ji Myung;Lee, Dong Gu;Kim, Hyun Young;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • This study was focused on the evaluation of radical scavenging effect and the protective activity against oxidative stress of the extract and fractions from Petasites japonicus. P. japonicus was extracted with methanol and then fractionated into 4 fractions [n-butanol, ethyl acetate (EtOAc), methylene chloride, and n-hexane]. The extract and fractions showed strong 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among all the fractions, particularly, the EtOAc fraction showed the strongest effect with the $IC_{50}$ value of $0.02{\mu}g/ml$. In addition, the fractions also showed strong hydroxyl radical scavenging activity and nitric oxide scavenging activity as well. Furthermore, cell viability generated by the P. japonicus extract and 4 fractions were examined under C6 glial cellular model. The C6 glial cells showed high generation of reactive oxygen species (ROS) and decrease in cell viability by the treatment generator of hydrogen peroxide. However, the production of ROS formation was decreased by the treatment of the fractions of P. japonicus and also founded that the EtOAc fraction led to significant increase in the cell viability at concentration $100{\mu}g/ml$. Results from this work indicated that P. japonicus showed protective effects against oxidative stress and its EtOAc fraction may be served as a useful natural antioxidant.

Decursin induces apoptosis in glioblastoma cells, but not in glial cells via a mitochondria-related caspase pathway

  • Oh, Seung Tack;Lee, Seongmi;Hua, Cai;Koo, Byung-Soo;Pak, Sok Cheon;Kim, Dong-Il;Jeon, Songhee;Shin, Boo Ahn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • Decursin is a major biological active component of Angelica gigas Nakai and is known to induce apoptosis of metastatic prostatic cancer cells. Recently, other reports have been commissioned to examine the anticancer activities of this plant. In this study, we evaluated the inhibitory activity and related mechanism of action of decursin against glioblastoma cell line. Decursin demonstrated cytotoxic effects on U87 and C6 glioma cells in a dose-dependent manner but not in primary glial cells. Additionally, decursin increased apoptotic bodies and phosphorylated JNK and p38 in U87 cells. Decursin also down-regulated Bcl-2 as well as cell cycle dependent proteins, CDK-4 and cyclin D1. Furthermore, decursin-induced apoptosis was dependent on the caspase activation in U87 cells. Taken together, our data provide the evidence that decursin induces apoptosis in glioblastoma cells, making it a potential candidate as a chemotherapeutic drug against brain tumor.

Studies on Proliferation and Migration of Glioma Cells for Development of an Artificial Nerve Tubing

  • Hyun Song;Chung, Dong-June;Choung, Pill-Hoon;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.105-105
    • /
    • 2001
  • In an attempt to provide useful information on the development of an artifitial nerve tubing, proliferative and migrative properties of two glioma cell lines, C6 rat glioma cells and Hs683 human glioma cells, were examined. The present study shows that C6 cells proliferated more rapidly than Hs683 cells. The Hs683 cells are more adequate for the development of nerve tubing since unlike C6 cells, they are of human origin and known to be non-tumorigenic. In order to enhance proliferative and migrative abilities of Hs683 cells for the application as an artificial nerve tubing, we studied the effect of glial cell-derived neurotrophic factor (GDNF) on Hs683 cells. Cells were seeded in the scaffolds (polymer constructs), fabricated with type I collegen and alginate modified with cinnamoyl moiety, in the presence or absence of GDNF Stimulatory effect of GDNF on the proliferation and migration of Hs683 cells cultured in the scaffolds is currently under investigation. In addition, possible neuroprotective activities of natural products which inhibit staurosporine-induced apoptosis of glioma cells are also being studied.

  • PDF

Glucose Oxidase/glucose Induces Apoptosis in C6 Glial Cells via Mitochondria-dependent Pathway

  • PARK Min Kyu;KIM Woo Sang;LEE Young Soo;KANG Young Jin;CHONG Won Seog;KIM Hye Jung;SEO Han Geuk;LEE Jae Heun;CHANG Ki Churl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.207-213
    • /
    • 2005
  • It has been proposed that reactive oxygen species (ROS), mainly superoxide anion ($O_2^-$) and hydrogen peroxide ($H_2O_2$), may mediate oxidative stress. Production of $H_2O_2$ during oxidative phosphorylation, inflammation, and ischemia can cause oxidative stress leading to cell death. Although glucose oxidase (GOX) in the presence of glucose continuously generates $H_2O_2$, it is not clear whether GOX produces apoptotic cell death in C6 glial cells. Thus, we investigated the mechanism by which GOX induces cell death. Cells were incubated with different concentration of GOX in the presence of glucose where cell viability, TUNEL and DNA ladder were analyzed. Results indicated that GOX exhibited cytotoxicity in a dose dependent manner by MTT assay. TUNEL positive cell and DNA laddering showed that GOX-induced cytotoxicity was due to apoptosis. Western blot analysis also showed that the cleaved caspase-3 level was detected in the GOX-treated cells at 10 mU/ml and increased dramatically at 30 mU/ml. Cleaved PARP also appeared at 10 mU/ml and lasted at 20 or 30 mU/ml of GOX. Cytochrome c level was increased by GOX dose dependently, which was contrast to Bcl-2 expression level. These results suggest that GOX induces apoptosis through caspase-3 activation, which followed by cytochrome c release from mitochondria through regulating of Bcl-2 level.

Involvement of MAPKs in GDNF-induced Proliferation and Migration in Hs683 Glioma Cells

  • Song, Hyun;Moon, A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.223.2-224
    • /
    • 2003
  • Glial cell-derived neurotrophic factor (GDNF) is a potent neurotrophic factor that enhances survival of midbrain doparminergic neuron. GDNF and its receptors are widely distributed in brain and are believed to be involved in the control of neuron survival and differentiation. GDNF increased proliferation and migration of Hs683 human giloma and C6 rat giloma cells in a dose-dependent manner. (omitted)

  • PDF