• Title/Summary/Keyword: C58

Search Result 3,837, Processing Time 0.045 seconds

repABC- Type Replicator Region of Megaplasmid pAtC58 in Agrobacterium tumefaciens C58

  • LEE KO-EUN;PARK DAE-KYUN;BAEK CHANG-HO;HWANG WON;KIM KUN-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.118-125
    • /
    • 2006
  • The region responsible for replication of the megaplasmid pAtC58 in the nopaline-type Agrobacterium tumefaciens strain C58 was determined. A derivative ofa Co1E1 vector, pBluscript SK-, incapable of autonomous replication in Agrobacterium spp, was cloned with a 7.6-kb Bg1II-HindIII fragment from a cosmid clone of pAtC58, which contains a region adjacent to the operon for the utilization of deoxyfructosyl glutamine (DFG). The resulting plasmid conferred resistance to carbenicillin on the A. tumefaciens strain UIA5 that is a plasmidfree derivative of C58. The plasmid was stably maintained in the strain even after consecutive cultures for generations. Analysis of nested deletions of the 7.6-kb fragment showed that a 4.3-kb BglII-XhoI region sufficiently confers replication of the derivative of the ColE1 vector on UIA5. The region comprises three ORFs, which have high homologies with repA, repB, and repC of plasm ids in virulent Agrobacterium spp. including pTiC58, pTiB6S3, pTi-SAKURA, and pRiA4b as well as those of symbiotic plasmids from Rhizobium spp. Phylogenie analysis showed that rep genes in pAtC58 are more closely related to those in pRiA4 than to pTi plasmids including pTiC58, suggesting that the two inborn plasmids, pTiC58 and pAtC58, harbored in C58 evolved from distinct origins.

Genes for the Catabolism of Deoxyfructosyl Glutamine in pAtC58 Are Attributed to Utilization of Octopine in Agrobacterium tumefaciens Strain NT1

  • Baek, Chang-Ho;Park, Dae-Kyun;Lee, Ko-Eun;Hwang, Won;Kim, In-Hwang;Maeng, Jue-Son;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.822-828
    • /
    • 2004
  • Nopaline-type Agrobacterium tumefaciens strain C58 cannot utilize octopine (Oct) as the sole carbon and nitrogen sources. This strain harbors two plasmids; a virulent plasmid, pTiC58, and a megaplasmid, pAtC58. From strain NT1, which is a derivative of C58 harboring only pAtC58, we isolated spontaneous mutants that utilize Oct as the sole nitrogen source. These Oct-catabolizing mutants, however, could not utilize the opine as the sole carbon source. In contrast, strain UIA5, a plasmid-free derivative of C58, could not give rise to such mutants. The mutations isolated from NT1 were mapped to socR in pAtC58, which is a negative regulator of the soc operon responsible for the uptake and catabolism of an Amadori opine, deoxyfructosyl glutamine (Dfg). A derivative of UIA5 carrying a clone of the soc operon with a transposon inserted in socR also utilizes Oct as the sole nitrogen source. However, UIA5 harboring the operon with mutations in each of the structural genes in the soc operon, socA, B, C, and D, lost the ability to generate spontaneous Oct-utilizing mutants, suggesting that soc genes in pAtC58 are required for the utilization of Oct as a nitrogen source, and that derepressed expression of these genes allows cells to utilize Oct. In contrast, Oct-catabolizing mutants derived from C58, which grew using Oct as the sole nitrogen source, could also utilize the opine as the sole carbon source. These mutants did not carry any detectable mutations in socR or the region upstream to the gene in pAtC58, suggesting that mutations occurring elsewhere in the genome, most likely in pTiC58, allow the uptake and catabolism of the opine.

Effect of Cooking Temperature and Time on Characteristics of Port Sausage (가열온도와 시간이 돈육소시지의 특성에 미치는 영향)

  • 정인철;문귀임;이돈우;문윤희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.832-836
    • /
    • 1994
  • This study was carried out to investigate several kinds of characteristics of pork sausage prepared by different cooking temperature and time (60, 90, 120, 150, 180 minutes in $58^{\circ}C$ and 25, 40, 55, 70, 85 minutes in $65^{\circ}C$). In case of color, L(bright), a (red) and b(yellow) value were 64.60-65.26, 9.14-9.94 and 8.68-9.34 in $58^{\circ}C$, and 65.16-66.68, 8.78-9.62 and 7.66-8.36 in $63^{\circ}C$, respectively. Gel strength showed high when cooking time was 120, 250 and 180 minute in $58^{\circ}C$ and 40 minute in $65^{\circ}C$. Residual nitrite concentration showed higher $58^{\circ}C$ than $65^{\circ}C$ and decreased gradually as cooking time elevated in all cooking temperature. Total plate count in 58$^{\circ}C$ was higher than $65^{\circ}C$, was wholly $8.7{\times}10^2~3.5{\times}10^3$.In case of free amino acid content, Asp, Glu and Lys were high and Cys, Met and Tyr low and was not different with $58^{\circ}C$ and $65^{\circ}C$. The result of sensory evaluation was not different (p<0.05) with $58^{\circ}C\;and\;65^{\circ}C$.

  • PDF

Silymarin-Mediated Degradation of c-Myc Contributes to the Inhibition of Cell Proliferation in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Jeong, Jin Boo;Koo, Jin Suk;Jeong, Hyung Jin
    • Korean Journal of Plant Resources
    • /
    • v.30 no.3
    • /
    • pp.265-271
    • /
    • 2017
  • In this study, we elucidated the molecular mechanism of silymarin by which silymarin may inhibits cell proliferation in human colorectal cancer cells in order to search the new potential anti-cancer target associated with the cell growth arrest. Silymarin reduced the level of c-Myc protein but not mRNA level indicating that silymarin-mediated downregulation of c-Myc may result from the proteasomal degradation. In the confirmation of silymarin-mediated c-Myc degradation, MG132 as a proteasome inhibitor attenuated c-Myc degradation by silymarin. In addition, silymarin phosphorylated the threonine-58 (Thr58) of c-Myc and the point mutation of Thr58 to alanine blocked its degradation by silymarin, which indicates that Thr58 phosphorylation may be an important modification for silymarin-mediated c-Myc degradation. We observed that the inhibition of ERK1/2, p38 and $GSK3{\beta}$ blocked the Thr58 phosphorylation and subsequent c-Myc degradation by silymarin. Finally, the point mutation of Thr58 to alanine attenuated silymarin-mediated inhibition of the cell growth. The results suggest that silymarin induces the cell growth arrest through c-Myc proteasomal degradation via ERK1/2, p38 and $GSK3{\beta}-dependent$ Thr58 phosphorylation.

SED modelling of broadband emission in the pulsar wind nebula 3C 58

  • Kim, Seungjong;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2019
  • We investigate broadband emission properties of the pulsar wind nebula (PWN) 3C 58 using a spectral energy distribution (SED) model. We attempt to match simultaneously the broadband SED and spatial variations and emission about 3C 58 in X-ray band. We further the model to explain a possible far-IR feature of which a hint is recently suggested in 3C 58: a small bump at ~10^11 GHz in the PLANCK and Herschel band. While external dust emission may easily explain the observed bump, it may be internal emission of PWNe implying an another additional population of particles. Although significance for the bump in 3C 58 is not higher than other PWNe, here we explore possible origins of the IR bump using the emission model and find that a population of electrons with GeV energies can explain the bump. If it is produced in the PWN, it may provide new insights into particle acceleration and flows in PWNe.

  • PDF

Oxalate Decarboxylase from Agrobacterium tumefaciens C58 is Translocated by a Twin Arginine Translocation System

  • Shen, Yu-Hu;Liu, Rui-Juan;Wang, Hai-Qing
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1245-1251
    • /
    • 2008
  • Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and $CO_2$. The OXDCs found in fungi and bacteria belong to a functionally diverse protein superfamily known as the cupins. Fungi-originated OXDCs are secretory enzymes. However, most bacterial OXDCs are localized in the cytosol, and may be involved in energy metabolism. In Agrobacterium tumefaciens C58, a locus for a putative oxalate decarboxylase is present. In the study reported here, an enzyme was overexpressed in Escherichia coli and showed oxalate decarboxylase activity. Computational analysis revealed the A. tumefaciens C58 OXDC contains a signal peptide mediating translocation of the enzyme into the periplasm that was supported by expression of signal-peptideless and full-length versions of the enzyme in A. tumefaciens C58. Further site-directed mutagenesis experiment demonstrated that the A. tumefaciens C58 OXDC is most likely translocated by a twin-arginine translocation (TAT) system.

INVESTIGATING THE PULSAR WIND NEBULA 3C 58 USING EMISSION MODELS

  • Kim, Seungjong;Park, Jaegeun;An, Hongjun
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.5
    • /
    • pp.173-180
    • /
    • 2019
  • We present IR flux density measurements, models of the broadband SED, and results of SED modeling for the Pulsar Wind Nebula (PWN) 3C 58. We find that the Herschel flux density seems to be slightly lower than suggested by interpolation of previous measurements in nearby wavebands, implying that there may be multiple electron populations in 3C 58. We model the SED using a simple stationary one-zone and a more realistic time-evolving multi-zone scenario. The latter includes variations of flow properties in the PWN (injected energy, magnetic field, and bulk speed), radiative energy losses, adiabatic expansion, and diffusion, similar to previous PWN models. From the modeling, we find that a PWN age of 2900-5400 yrs is preferred and that there may be excess emission at ${\sim}10^{11}Hz$. The latter may imply multiple populations of electrons in the PWN.

FAR-INFRARED SPECTRAL ENERGY DISTRIBUTION OF THE PULSAR WIND NEBULA 3C 58

  • Park, Jaeguen;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.48.3-48.3
    • /
    • 2019
  • We present analysis results of far infrared (IR) data for 3C 58. We use Herschel observations to measure the IR spectral slope of the source. Our measurements add new IR data points to exisiting high-frequency ones and allow us to improve the IR spectral energy distribution (SED) of 3C 58, and so a cooling break expected in the optical band can be located more precisely. We interpret the SED and the break using a synchrotron+ inverse-Compton model for PWNe and infer flow properties in 3C 58. Because the IR data are contaminated by foregrounds and backgrounds, we discuss impacts of the contamination on our conclusion.

  • PDF