Browse > Article

Oxalate Decarboxylase from Agrobacterium tumefaciens C58 is Translocated by a Twin Arginine Translocation System  

Shen, Yu-Hu (School of Life Science, Lanzhou University)
Liu, Rui-Juan (Northwest Plateau Institute of Biology, the Chinese Academy of Sciences)
Wang, Hai-Qing (Northwest Plateau Institute of Biology, the Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.7, 2008 , pp. 1245-1251 More about this Journal
Abstract
Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and $CO_2$. The OXDCs found in fungi and bacteria belong to a functionally diverse protein superfamily known as the cupins. Fungi-originated OXDCs are secretory enzymes. However, most bacterial OXDCs are localized in the cytosol, and may be involved in energy metabolism. In Agrobacterium tumefaciens C58, a locus for a putative oxalate decarboxylase is present. In the study reported here, an enzyme was overexpressed in Escherichia coli and showed oxalate decarboxylase activity. Computational analysis revealed the A. tumefaciens C58 OXDC contains a signal peptide mediating translocation of the enzyme into the periplasm that was supported by expression of signal-peptideless and full-length versions of the enzyme in A. tumefaciens C58. Further site-directed mutagenesis experiment demonstrated that the A. tumefaciens C58 OXDC is most likely translocated by a twin-arginine translocation (TAT) system.
Keywords
Oxalate decarboxylase; Agrobacterium tumfaciens; prokaryotic expression; enzymatic activity assay; signal peptide; twin-arginine translocation system;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Berks, B. C. 1996. A common export pathway for proteins binding complex redox cofactors. Mol. Microbiol. 22: 393-404   DOI   ScienceOn
2 Cristobal, S., J. W. de Gier, H. Nielsen, and G. von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J. 18: 2982-2990   DOI
3 Daniel, M. B., D. R. Michael, and J. E. Stuart. 1996. Protein Methods, pp. 107-155, 195-230. 2nd Ed. Wiley-Liss, Inc., New York
4 Khuri, S., F. T. Bakker, and J. M. Dunwell. 2001. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol. 18: 593-605   DOI   ScienceOn
5 Micales, J. A. 1997. Localization and induction of oxalate decarboxylation in the brown-rot wood decay fungus Postia placenta. Int. Biodeterior. Biodegrad. 39: 125-132   DOI
6 Tanner, A., L. Bowater, S. A. Fairhurst, and S. Bornemann. 2001. Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J. Biol. Chem. 276: 43627-43634   DOI   ScienceOn
7 Kuwana, R., Y. Kasahara, M. Fujibayashi, H. Takamatsu, N. Ogasawara, and K. Watabe. 2002. Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148: 3971-3982   DOI
8 Schmidt-Eisenlohr, H., N. Domke, and C. Baron. 1999. TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecular weight structures in Escherichia coli. J. Bacteriol. 181: 5563-5571
9 Schmidt-Eisenlohr, H., N. Domke, C. Angerer, G. Wanner, P. C. Zambryski, and C. Baron. 1999. Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J. Bacteriol. 181: 7485-7592
10 Dunwell, J. M. and P. J. Gane. 1998. Microbial relatives of seed storage proteins: Conservation of motifs in a functionally diverse superfamily of enzymes. J. Mol. Evol. 46: 147-154   DOI   ScienceOn
11 Dunwell, J. M., S. Khuri, and P. J. Gane. 2000. Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol. Mol. Biol. Rev. 64: 153-179   DOI   ScienceOn
12 Feilmeier, B. J., G. Iseminger, D. Schroeder, H. Webber, and G. J. Phillips. 2000. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J. Bacteriol. 182: 4068-4076   DOI   ScienceOn
13 Bibi, E. 1998. The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. Trend Biochem. Sci. 23: 51-55   DOI
14 Magro, P., P. Marciano, and P. D. Lenna. 1988. Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 49: 49-52   DOI   ScienceOn
15 Mehta, A. and A. Datta. 1991. Oxalate decarboxylase from Collybia velutipes. Purification, characterization, and cDNA cloning. J. Biol. Chem. 266: 23548-23553
16 Scelonge, C. J. and D. L. Bidney. 1998. Gene encoding oxalate decarboxylase from Aspergillus phoenices. Patent Application WO 98/42827
17 Kathiara, M., D. A. Wood, and C. S. Evans. 2000. Detection and partial characterization of oxalate decarboxylase from Agaricus bisporus. Mycol. Res. 104: 345-350   DOI   ScienceOn
18 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, pp. 1-69, 852-861. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
19 Azam, M., M. Kesarwani, K. Natarajan, and A. Datta. 2001. A secretion signal is present in the Collybia velutipes oxalate decarboxylase gene. Biochem. Biophys. Res. Commun. 289: 807-812   DOI   ScienceOn
20 Costa, T., L. Steil, L. O. Martins, U. Volker, and A. O. Henriques. 2004. Assembly of an oxalate decarboxylase produced under $\sigma^{K}$control into the Bacillus subtilis spore coat. J. Bacteriol. 186: 1462-1474   DOI   ScienceOn
21 Thomas, J. D., R. A. Daniel, J. Errington, and C. Robinson. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol. Microbiol. 39: 47-53   DOI   ScienceOn
22 Goodner, B., G. Hinkle, S. Gattung, N. Miller, M. Blanchard, B. Qurollo, et al. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328   DOI
23 Antelmann, H., S. Towe, D. Albrecht, and M. Hecker. 2007. The phosphorus source phytate changes the composition of the cell wall proteome in Bacillus subtilis. J. Proteome Res. 6: 897-903   DOI   ScienceOn
24 Kesarwani, M., M. Azam, K. Natarajan, A. Mehta, and A. Datta. 2000. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem. 275: 7230-7238   DOI   ScienceOn
25 Lane, B. G., J. M. Dunwell, J. A. Ray, M. R. Schmitt, and A. C. Cuming. 1993. Germin, a protein marker of early plant development, is an oxalate oxidase. J. Biol. Chem. 268: 12239-12242
26 Dunwell, J. M. 1998. Sequence analysis of the cupin gene family in Synechocystis PCC6803. Microb. Comp. Genomics 3: 141-148   DOI
27 Bernstein, H. 1998. Membrane protein biogenesis: The exception explains the rules. Proc. Natl. Acad. Sci. USA 95: 14587-14589
28 Tanner, A. and S. Bornemann. 2000. Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J. Bacteriol. 182: 5271-5273   DOI   ScienceOn
29 Dutton, M. V. and C. S. Evans. 1996. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42: 881-895   DOI   ScienceOn
30 Maloney, P. C. 1994. Bacterial transporters. Curr. Opin. Cell Biol. 6: 571-582   DOI   ScienceOn
31 Settles, A. and R. Martienssen. 1998. Old and new pathways of protein export in chloroplasts and bacteria. Trends Cell Biol. 8: 494-501   DOI   ScienceOn
32 Anantharam, V., M. J. Allison, and P. C. Maloney. 1989. Oxalate: Formate exchange. The basis for energy coupling in Oxalobacter. J. Biol. Chem. 264: 7244-7250