• Title/Summary/Keyword: C-type connections

Search Result 50, Processing Time 0.025 seconds

SKEW COMPLEX SYMMETRIC OPERATORS AND WEYL TYPE THEOREMS

  • KO, EUNGIL;KO, EUNJEONG;LEE, JI EUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1269-1283
    • /
    • 2015
  • An operator $T{{\in}}{\mathcal{L}}({\mathcal{H}})$ is said to be skew complex symmetric if there exists a conjugation C on ${\mathcal{H}}$ such that $T=-CT^*C$. In this paper, we study properties of skew complex symmetric operators including spectral connections, Fredholmness, and subspace-hypercyclicity between skew complex symmetric operators and their adjoints. Moreover, we consider Weyl type theorems and Browder type theorems for skew complex symmetric operators.

Dry Connections for Precast Shear Wall Systems (프리캐스트 전단벽 시스템의 건식접합부에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC walls require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Limit states of RC structures with first floor irregularities

  • Favvata, Maria J.;Naoum, Maria C.;Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.791-818
    • /
    • 2013
  • The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

Fatigue Analysis of LNG Cargo Containment System Connections in Membrane LNG Carrier

  • Park, Jun-Bum
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.112-124
    • /
    • 2017
  • As an LNG carrier preserves and transports liquefied natural gas under minus $163^{\circ}C$, the cargo tank has to have sufficient hull strength against not only the wave loads but also against loads caused by loading and unloading and thermal expansion to keep the LNG safely. The main insulation types for a CCS are No.96 and Mark III from GTT for the membrane LNG carrier. Particularly, the invar membrane plate in No.96 is very thin and its connections could experience high local stresses owing to such dynamic loads. Therefore, it should be verified whether those connections have sufficient fatigue lives for the purpose of operation and maintenance. This research aims at performing fatigue analysis with 0.1 fatigue damage criteria for 40 years of design life to support new membrane CCS development using proper S-N curves and the associated finite element modeling technique for each connection and then propose a reasonable design methodology.

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).

HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI POLYNOMIALS WITH PARAMETERS a, b AND c

  • Corcino, Cristina B.;Corcino, Roberto B.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.423-445
    • /
    • 2021
  • In this paper, a new form of poly-Genocchi polynomials is defined by means of polylogarithm, namely, the Apostol-type poly-Genocchi polynomials of higher order with parameters a, b and c. Several properties of these polynomials are established including some recurrence relations and explicit formulas, which are used to express these higher order Apostol-type poly-Genocchi polynomials in terms of Stirling numbers of the second kind, Apostol-type Bernoulli and Frobenius polynomials of higher order. Moreover, certain differential identity is obtained that leads this new form of poly-Genocchi polynomials to be classified as Appell polynomials and, consequently, draw more properties using some theorems on Appell polynomials. Furthermore, a symmetrized generalization of this new form of poly-Genocchi polynomials that possesses a double generating function is introduced. Finally, the type 2 Apostolpoly-Genocchi polynomials with parameters a, b and c are defined using the concept of polyexponential function and several identities are derived, two of which show the connections of these polynomials with Stirling numbers of the first kind and the type 2 Apostol-type poly-Bernoulli polynomials.

Exploration on Mathematical Tasks on Function Content in MiC 3 level Textbook (MiC 교과서의 수학적 과제의 인지적 요구 정도 분석 -함수 내용을 중심으로-)

  • Hwang, Hye Jeang;Park, Hyun-Pa
    • Communications of Mathematical Education
    • /
    • v.27 no.4
    • /
    • pp.449-472
    • /
    • 2013
  • Instructional materials including problem situations or problems or tasks on real-life situations are considered as an important and significant factor to lead a successful math instruction. MiC Textbook is a representative one showing good examples and tasks including fluent realistic situations on the basis of the background of the Freudenthal's theory. This study explores concretely and in detail the type of level of mathematical tasks, by the subject of MiC Textbook. To accomplish this, this study reconstructs and establishes an elaborated analysis framework using 'the cognitive demand level' suggested by Stein, et, al. The cognitive demand level is comprized of four elements such as Memorization Tasks, Procedures Without Connections Tasks, Procedures With Connections Tasks, and Doing Mathematics Tasks. Memorization Tasks and Procedures Without Connections Tasks are considered as low level tasks, and Procedures With Connections Tasks and Doing Mathematics Tasks are as high level tasks. MiC Textbook is comprized of the four areas of 'number', 'algebra', 'geometry and measurement', and 'data analysis and statistics'. This study deals with the tasks relevant to Function content dealt with in MiC 3 level Textbook, and explore the level of cognitive demands on each task.

Refined damage prediction of low-rise building envelope under high wind load

  • Pan, F.;Cai, C.S.;Zhang, W.;Kong, B.
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.669-691
    • /
    • 2014
  • Since low-rise residential buildings are the most common and vulnerable structures in coastal areas, a reliable prediction of their performance under hurricanes is necessary. The present study focuses on developing a refined finite element model that is able to more rigorously represent the load distributions or redistributions when the building behaves as a unit or any portion is overloaded. A typical 5:12 sloped low-rise residential building is chosen as the prototype and analyzed under wind pressures measured in the wind tunnel. The structural connections, including the frame-to-frame connections and sheathing-to-frame connections, are modeled extensively to represent the critical structural details that secure the load paths for the entire building system as well as the boundary conditions provided to the building envelope. The nail withdrawal, the excessive displacement of sheathing, the nail head pull-through, the sheathing in-plane shear, and the nail load-slip are found to be responsible for the building envelope damage. The uses of the nail type with a high withdrawal capacity, a thicker sheathing panel, and an optimized nail edge distance are observed to efficiently enhance the building envelope performance based on the present numerical damage predictions.

Seismic Performance of T-Shaped PC Walls with Wet Cast Joint (현장타설 습식접합부가 있는 T형 PC 벽체의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.255-266
    • /
    • 2014
  • This paper investigates the seismic performance of T-shaped PC walls with a new vertical connections and wet cast joint. The load-displacement relationship, strength, ductility, failure mechanism, and deformation capacity of the T-shaped PC walls subjected to cyclic loading are verified. Test parameter is diagonal reinforcement of both flange and web wall panels to transfer shear strength. The longitudinal reinforcing steel bars placed edges of walls yield first and the ultimate deformation is terminated due to premature failure of connections. And diagonal reinforcements for shear transfer in walls are effective to restrain the wall crack. The strength and displacement obtained by the cross section analysis were very similar to the experimental data.

Evaluation of shear lag parameters for beam-to-column connections in steel piers

  • Hwang, Won-Sup;Kim, Young-Pil;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.691-706
    • /
    • 2004
  • The paper presents shear lag parameters for beam-to-column connections in steel box piers. Previous researches have analyzed beam-to-column connections in steel piers using a shear lag parameter ${\eta}_o$ obtained from a simple beam model, which is not based on a reasonable design assumption. Instead, the current paper proposes a cantilever beam model and has proved the effectiveness through theoretical and experimental studies. The paper examines the inaccuracy of the previous researches by estimating the effective width, the width-span length ratio L/b, and the sectional area ratio S of a cantilever beam. Two different shear lag parameters are defined using the cantilever model and the results are compared each other. The first type of shear lag parameter ${\eta}_c$ of a cantilever beam is derived using additional moments from various stress distribution functions while the other shear lag parameter ${\eta}_{eff}$ of a cantilever beam is defined based on the concept of the effective width. An evaluation method for shear lag stresses has been investigated by comparing analytical stresses with test results. Through the study, it could be observed that the shear lag parameter ${\eta}_{eff}$ agrees with ${\eta}_c$ obtained from the $2^{nd}$ order stress distribution function. Also, it could be observed that the shear lag parameter ${\eta}_c$ using the $4^{th}$ order stress distribution function almost converges to the upper bound of test results.