• Title/Summary/Keyword: C-strain

Search Result 5,770, Processing Time 0.031 seconds

Molecular dynamic studies for elastic constant of SiC crystal at high temperature (고온에서 SiC 결정의 탄성율에 대한 분자동역학연구)

  • Park, B.W.;Shin, H.R.;Kim, J.H.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.232-236
    • /
    • 2010
  • Silicon carbide (SiC) ceramics are widely used in the application of high-temperature structural devices due to their light weight as well as superior hardness, fracture toughness, and temperature stability. In this paper, we employed classical molecular dynamics simulations using Tersoff's potential to investigate the elastic constants of the SiC crystal at high temperature. The stress-strain characteristics of the SiC crystal were calculated with the LAMMPS software and the elastic constants of the SiC crystal were analyzed. Based on the stress-strain analysis, the SiC crystal has shown the elastic deformation characteristics at the low temperature region. But the slight plastic deformation behavior was shown as applied the high strain over $1,000^{\circ}C$. Also the elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa as increased the temperature to $1,250^{\circ}C$.

A study on fatigue characteristics of spring under high-temperature (고온하에서의 스프링의 피로특성에 관한 연구)

  • 이영배;염영하;우창수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.77-87
    • /
    • 1986
  • The fatigue characteristic study of a Pony Coil spring is performed by considering the tropical service conditions in the range of 50.deg. C through 150.deg. C. The experiment results of the static and dynamic characteristics of the test pieces agreed with the result of the strain analysis by wittricke's method. The strain energy value is increased as temperature rises. An increase is 1.58% at 100.deg. C and 2.26% at 150.deg. C after fatigue tests. The elastic strain is also decreased as temperature rises.

  • PDF

Effect of strain rate and stress triaxiality on fracture strain of 304 stainless steels for canister impact simulation

  • Seo, Jun-Min;Kim, Hune-Tae;Kim, Yun-Jae;Yamada, Hiroyuki;Kumagai, Tomohisa;Tokunaga, Hayato;Miura, Naoki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2386-2394
    • /
    • 2022
  • In this paper, smooth and notched bar tensile tests of austenitic stainless steel 304 are performed, covering four different multi-axial stress states and six different strain rate conditions, to investigate the effect of the stress triaxiality and strain rate on fracture strain. Test data show that the measured true fracture strain tends to decrease with increasing stress triaxiality and strain rate. The test data are then quantified using the Johnson-Cook (J-C) fracture strain model incorporating combined effects of the stress triaxiality and strain rate. The determined J-C model can predict true fracture strain overall conservatively with the difference less than 20%. The conservatism in the strain-based acceptance criteria in ASME B&PV Code, Section III, Appendix FF is also discussed.

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.

Studies on the Cold Attenuation and Protective Effects of a Thermostable Newscastle Disease Virus Isolated from Korean Pheasants (한국산 꿩으로부터 분리한 열안정성 뉴캣슬병 바이러스의 저온순화와 방어효과)

  • K. H. Kwak;S. C. Han;T. J. Kim;K. S. Chang;M. H. Jun;H. J. Song
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.83-89
    • /
    • 2001
  • Newcastle disease virus, CBP-1 strain isolated from Korean pheasants was passaged for 173 times by 9-day-old specific pathogenic free (SPF) embryonated eggs at $37^{\circ}C$ (parent strain) and subsequently passaged for 15 (cold attenuation (CA) -15) and 30(cold attenuation (CA) -30) times by 10-day-old of commercial broiler chicks embryonated eggs at $29^{\circ}C$, respectively, The Physical and chemical properties (sensitivity to lipid solvents, low pH and thermostability), pathogenicity (mean death time, intracerebral pathogenic index and intravenous patho-genic index), safety, booster or protective effect and characterization of temperature sensitivity were measured in cold attenuated CA-15 or 30 strain and compared to those of parent CBP-1 strain. NDV, CBP-1 CA-30 strain acquired cold attenuation and decreased infectivity at $41^{\circ}C$ compared to those of parent strain grown at $37^{\circ}C$. It lost hemagglutination activity (HA) and cell infectivity at $56^{\circ}C$ for 30, 60, and 120 Min. CA-30 strain treated with ethyl ether also lost its HA and cell infectivity. Both CA-30 and parent strains exhibited a little resistant to HA at pH 3.0 glycine HCI buffer. Intracerebral pathogenic index (ICPI) and intravenous pathogenic index (IVPI) of parent strain were 1.12 and 1.45, but decreased to 0.75 and 0.00 in CA-30 strain, respectively. The safety was evaluated by mortality in chicks inoculated with 10$^{4.0}$ EID$_{50}$ /0.1 ml. The mortalities of parent, CA-30 and commercial Bl strains were 17.5, 12.0 and 0.0%, respectively. The safety of CA-30 strain was higher than that of parent strain. The booster effects of CA-30 strain and parent strain performed in 4-week-old chicks after being vaccinated with primary commercial Bl strain.

  • PDF

A Study on Hot Deformation Behavior of $SiC_p$/AI2024 Composites Reinforced with Different Sizes of $SiC_p$ ($SiC_p$ 크기를 달리한 $SiC_p$/Al2024 복합재료의 열간 변형특성에 관한연구)

  • Ko, Byung-Chul;Hong, Heung-Ki;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.158-167
    • /
    • 1998
  • Hot restoration mechanism flow stress and stain of the Al2024 composites reinforced with 1,8,15,36, and $44{\mu}m\;SiC_p$(10 vol. %) were studied by hot torsion tests. The hot restoration mechanism of all the composites was found to be dynamic recrystallization(DRX) at $320^{\circ}C$ while that of the composites reinforced with 1 and $8{\mu}m\;SiC_p$ was found to be dynamic recovery(DRX) at $480^{\circ}C$. It was found that the Al2024 composite with $15{\mu}m\;SiC_p$ showed the highest flow stress(${\sim}$223 MPa) at $320^{\circ}C$ under a strain rate of 1.0/sec. Also the highest flow strain of the composites was obtained at $430^{\circ}C$. The com-posites reinforced with 1 and $8{\mu}m\;SiC_p$ showed lower flow stress and higher flow strain at $480^{\circ}C$ than those of the composites reinforced with 15, 36, and $44\;{\mu}m\;SiC_p$ These result were discussed in relation to the transition of the hot restoration mechanism. $DRX{\leftrightarrow}DRV$. The dependence of flow stress on strain rate and temperature was attempted to fit with the hyperbolic sine equation ($\dot{\varepsilon}=A[sinh({\alpha}{\cdot}{\sigma}_p]^n$ exp(-Q/RT)and Zener-Hollomon parameter($Z=\;\dot{\varepsilon}\;exp(Q/RT))$.

  • PDF

Development of Strain Fermenting the Glucose/Cellbiose Mixed Sugar for Simultaneous Saccharification of Fermentation of Cellulosic Materials (섬유소 물질의 동시당화발효에 적합한 Glucose/Cellbiose 혼합당 발효균주의 개발)

  • 박승원;홍영기;김승욱;홍석인
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 1999
  • Brettanomyces custersii CBS 5512 which has reported as a thermotolerant glucose-cellobiose co-fermentable yeast strain was mutated with UV and NTG to improve ethanol yield at higher than 4$0^{\circ}C$ B. custersii H1-23, H1-39, H1-55 and H1062 were finally selected for hyper-fermentable strains at higher than 4$0^{\circ}C$ from thermotolerant 7510 colonies through 5th selection. Among the selected strains, H1-39 mutant had better fermentability at 4$0^{\circ}C$ and 43$^{\circ}C$ from different concentrations of glucose. H1-39 and H1-23 mutants yielded more than 70% of the theoretical ethanol yield in 4 and 8% mixed sugars at above 4$0^{\circ}C$, which was 5-11% higher than those by original strain. Especially, H1-39 mutant had better fermentability in 4% mixed sugar. It showed 78.5% of the theoretical yield at 4$0^{\circ}C$ and 72.2% of the theoretical yield at 43$^{\circ}C$. On the other hand, theoretical yield of ethanol by H1-39 mutant in 8% mixed sugar at 4$0^{\circ}C$ and 43$^{\circ}C$ were 75.2% and 70.2%, respectively. Theses values increased up to 7-11% as compared to those by orginal strain. By the simultaneous saccharification and fermentation, ethanol production by H1-39 mutant increased up to more than 23% as compared to that by original strain.

  • PDF

Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics

  • Son, Seungwoo;Lee, Raham;Park, Seung-Moon;Lee, Sung Ho;Lee, Hak-Kyo;Kim, Yangseon;Shin, Donghyun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1411-1422
    • /
    • 2021
  • Lactobacillus acidophilus is a gram-positive, microaerophilic, and acidophilic bacterial species. L. acidophilus strains in the gastrointestinal tracts of humans and other animals have been profiled, but strains found in the canine gut have not been studied yet. Our study helps in understanding the genetic features of the L. acidophilus C5 strain found in the canine gut, determining its adaptive features evolved to survive in the canine gut environment, and in elucidating its probiotic functions. To examine the canine L. acidophilus C5 genome, we isolated the C5 strain from a Korean dog and sequenced it using PacBio SMRT sequencing technology. A comparative genomic approach was used to assess genetic relationships between C5 and six other strains and study the distinguishing features related to different hosts. We found that most genes in the C5 strain were related to carbohydrate transport and metabolism. The pan-genome of seven L. acidophilus strains contained 2,254 gene families, and the core genome contained 1,726 gene families. The phylogenetic tree of the core genes in the canine L. acidophilus C5 strain was very close to that of two strains (DSM20079 and NCFM) from humans. We identified 30 evolutionarily accelerated genes in the L. acidophilus C5 strain in the ratio of non-synonymous to synonymous substitutions (dN/dS) analysis. Five of these thirty genes were associated with carbohydrate transport and metabolism. This study provides insights into genetic features and adaptations of the L. acidophilus C5 strain to survive the canine intestinal environment. It also suggests that the evolution of the L. acidophilus genome is closely related to the host's evolutionary adaptation process.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part I - Analysis on Void Formation and Microstructure (1.9wt%C 초고탄소 워크롤 단조 공정 : Part I - 기공생성 및 미세조직 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.456-462
    • /
    • 2013
  • Compression tests were conducted at the various temperatures and strain rates to investigate void formation and microstructures behavior of a 1.9wt%C ultrahigh carbon steel used in forged workrolls. The microstructure, grain size and volume fraction of cementite were determined using specimens deformed in the temperature range from 800 to $1150^{\circ}C$ and strain rates from 0.01 to 10/s. It was found from the microstructural analysis that the grain size is larger at higher temperatures and lower strain rate deformation conditions. In addition, a higher volume fraction of cementite was measured at lower temperatures. The brittle blocky cementite was fractured at $800^{\circ}C$ and $900^{\circ}C$ regardless of strain rate. As a result, numerous new micro voids were formed in the fragmented blocky cementite. It was also found that local melting can occur at temperatures of more than $1130^{\circ}C$. Therefore, the forging temperature should be controlled between $900^{\circ}C$ and $1120^{\circ}C$. The temperature rise, which depends on the anvil stroke and velocity, was estimated through cogging simulation to find the appropriate forging temperature and to prevent local melting due to plastic work.

A Study on the Properties of SiC Nanotubes: Molecular Dynamics Simulation (탄화규소 나노튜브의 특성에 관한 연구: 분자동역학 전산모사)

  • 문원하;함정국;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2003
  • We investigate the structure and properties of SiC (Silicon Carbide) nanotubes using molecular dynamics simulation based on the Tersoff bond-order potential. For small diameter tubes, the Si-C bond distance of SiC nanotubes decreases as the nanotube diameter is decreased, due to curvature of the nanotube surface. We find that Young's modulus of SiC nanotubes is somewhat smaller than that of the other nanotubes considered so far. However, Young's modulus for SiC nanotubes is larger than that of ${\beta}$-SiC and almost equal to the experimental value for SiC nanorod and SiC whisker. The strain energy of the SiC nanotubes is also lower than that of the other nanotubes. The lower strain energy of SiC nanotubes raises the possibility of synthesis of SiC nanotubes.