Browse > Article
http://dx.doi.org/10.5187/jast.2021.e126

Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics  

Son, Seungwoo (Department of Agricultural Convergence Technology, Jeonbuk National University)
Lee, Raham (Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University)
Park, Seung-Moon (Department of Bioenvironmental Chemistry, College of Agriculture and Life Sciences, Jeonbuk National University)
Lee, Sung Ho (Woogene B&G)
Lee, Hak-Kyo (Department of Agricultural Convergence Technology, Jeonbuk National University)
Kim, Yangseon (Center for Industrialization of Agriculture and Livestock Microorganism)
Shin, Donghyun (Department of Agricultural Convergence Technology, Jeonbuk National University)
Publication Information
Journal of Animal Science and Technology / v.63, no.6, 2021 , pp. 1411-1422 More about this Journal
Abstract
Lactobacillus acidophilus is a gram-positive, microaerophilic, and acidophilic bacterial species. L. acidophilus strains in the gastrointestinal tracts of humans and other animals have been profiled, but strains found in the canine gut have not been studied yet. Our study helps in understanding the genetic features of the L. acidophilus C5 strain found in the canine gut, determining its adaptive features evolved to survive in the canine gut environment, and in elucidating its probiotic functions. To examine the canine L. acidophilus C5 genome, we isolated the C5 strain from a Korean dog and sequenced it using PacBio SMRT sequencing technology. A comparative genomic approach was used to assess genetic relationships between C5 and six other strains and study the distinguishing features related to different hosts. We found that most genes in the C5 strain were related to carbohydrate transport and metabolism. The pan-genome of seven L. acidophilus strains contained 2,254 gene families, and the core genome contained 1,726 gene families. The phylogenetic tree of the core genes in the canine L. acidophilus C5 strain was very close to that of two strains (DSM20079 and NCFM) from humans. We identified 30 evolutionarily accelerated genes in the L. acidophilus C5 strain in the ratio of non-synonymous to synonymous substitutions (dN/dS) analysis. Five of these thirty genes were associated with carbohydrate transport and metabolism. This study provides insights into genetic features and adaptations of the L. acidophilus C5 strain to survive the canine intestinal environment. It also suggests that the evolution of the L. acidophilus genome is closely related to the host's evolutionary adaptation process.
Keywords
Lactobacillus acidophilus; Canine; Comparative genomics; Pan-genome analysis; Host adaptation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. https://doi.org/10.1186/s13059-019-1832-y   DOI
2 Loytynoja A. Phylogeny-aware alignment with PRANK. In: Russell D, editor. Multiple sequence alignment methods. Totowa, NJ: Humana Press; 2014. p. 155-70.
3 Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609-12. https://doi.org/10.1093/nar/gkl315   DOI
4 Chung WH, Kang J, Lim MY, Lim T, Lim S, Roh SW, et al. Complete genome sequence and genomic characterization of Lactobacillus acidophilus LA1 (11869BP). Front Pharmacol. 2018;9:83. https://doi.org/10.3389/fphar.2018.00083   DOI
5 Falentin H, Cousin S, Clermont D, Creno S, Ma L, Chuat V, et al. Draft genome sequences of five strains of Lactobacillus acidophilus, strain CIP 76.13T, isolated from humans, strains CIRM-BIA 442 and CIRM-BIA 445, isolated from dairy products, and strains DSM 20242 and DSM 9126 of unknown origin. Genome Announc. 2013;1:e00658-13. https://doi.org/10.1128/genomeA.00658-13   DOI
6 Heo J, Shin D, Chang SY, Bogere P, Park MR, Ryu S, et al. Comparative genome analysis and evaluation of probiotic characteristics of Lactobacillus plantarum strain JDFM LP11. Korean J Food Sci Anim Resour. 2018;38:878-8. https://doi.org/10.5851/kosfa.2018.e21   DOI
7 Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006;103:15611-6. https://doi.org/10.1073/pnas.0607117103   DOI
8 Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15:496-503. https://doi.org/10.1016/S0169-5347(00)01994-7   DOI
9 vonHoldt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898-902. https://doi.org/10.1038/nature08837   DOI
10 Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR. Widespread genetic switches and toxicity resistance proteins for fluoride. Science. 2012;335:233-5. https://doi.org/10.1126/science.1215063   DOI
11 Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360-4. https://doi.org/10.1038/nature11837   DOI
12 Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6:72. https://doi.org/10.1186/s40168-018-0450-3   DOI
13 Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540-52. https://doi.org/10.1093/oxfordjournals.molbev. a026334   DOI
14 Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11:4745-67. https://doi.org/10.3390/ijerph110504745   DOI
15 Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929-31. https://doi.org/10.1093/bioinformatics/btv681   DOI
16 Goh YJ, Klaenhammer TR. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microb Cell Fact. 2014;13:94. https://doi.org/10.1186/s12934-014-0094-3   DOI
17 Ljungh A, Wadstrom T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006;7:73-90.
18 Marelli SP, Fusi E, Giardini A, Martino PA, Polli M, Bruni N, et al. Effects of probiotic Lactobacillus acidophilus D2/CSL (CECT 4529) on the nutritional and health status of boxer dogs. Vet Rec. 2020;187:e28. https://doi.org/10.1136/vr.105434   DOI
19 Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: a review. J Vet Intern Med. 2018;32:9-25. https://doi.org/10.1111/jvim.14875   DOI
20 Sommer F, Backhed F. The gut microbiota - masters of host development and physiology. Nat Rev Microbiol. 2013;11:227-38. https://doi.org/10.1038/nrmicro2974   DOI
21 Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586-91. https://doi.org/10.1093/molbev/msm088   DOI
22 Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595   DOI
23 Son S, Oh JD, Lee SH, Shin D, Kim Y. Comparative genomics of canine Lactobacillus reuteri reveals adaptation to a shared environment with humans. Genes Genomics. 2020;42:1107-16. https://doi.org/10.1007/s13258-020-00978-w   DOI
24 Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol. 2007;189:4624-34. https://doi.org/10.1128/JB.00337-07   DOI
25 Stahl B, Barrangou R. Complete genome sequence of probiotic strain Lactobacillus acidophilus La-14. Genome Announc. 2013;1:e00376-13. https://doi.org/10.1128/genomeA.00376-13   DOI
26 Dean SN, Vora GJ, Walper SA. Complete genome sequence of Lactobacillus acidophilus strain ATCC 53544. Genome Announc. 2017;5:e01138-17. https://doi.org/10.1128/genomeA.01138-17   DOI
27 Goh YJ, Klaenhammer TR. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon. Mol Microbiol. 2013;89:1187-200. https://doi.org/10.1111/mmi.12338   DOI
28 Kryazhimskiy S, Plotkin JB. The population genetics of dN/dS. PLOS Genet. 2008;4:e1000304. https://doi.org/10.1371/journal.pgen.1000304   DOI
29 Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977;267:275-6. https://doi.org/10.1038/267275a0   DOI
30 Jang SY, Heo J, Park MR, Song MH, Kim JN, Jo SH, et al. Genome characteristics of Lactobacillus fermentum strain JDFM216 for application as probiotic bacteria. J Microbiol Biotechnol. 2017;27:1266-71. https://doi.org/10.4014/jmb.1703.03013   DOI
31 Baati L, Fabre-Gea C, Auriol D, Blanc PJ. Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels. Int J Food Microbiol. 2000;59:241-7. https://doi.org/10.1016/S0168-1605(00)00361-5   DOI
32 Ghouri YA, Richards DM, Rahimi EF, Krill JT, Jelinek KA, DuPont AW. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol. 2014;7:473-87. https://doi.org/10.2147/CEG.S27530   DOI
33 Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F, et al. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol. 2007:1311-21. https://doi.org/10.1128/JB.01393-06   DOI
34 Bull M, Plummer S, Marchesi J, Mahenthiralingam E. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett. 2013;349:77-87. https://doi.org/10.1111/1574-6968.12293   DOI
35 Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691-3. https://doi.org/10.1093/bioinformatics/btv421   DOI
36 Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722-32. https://doi.org/10.1038/nrmicro1235   DOI
37 Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068-9. https://doi.org/10.1093/bioinformatics/btu153   DOI
38 Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309-14. https://doi.org/10.1093/nar/gky1085   DOI
39 Iartchouk O, Kozyavkin S, Karamychev V, Slesarev A. Complete genome sequence of Lactobacillus acidophilus FSI4, isolated from yogurt. Genome Announc. 2015;3:e00166-15. https://doi.org/10.1128/genomeA.00166-15   DOI