• Title/Summary/Keyword: C-space

Search Result 4,750, Processing Time 0.033 seconds

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

On real hypersurfaces of a complex hyperbolic space

  • Kang, Eun-Hee;Ki, U-Hang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.173-184
    • /
    • 1997
  • An n-dimensional complex space form $M_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c. As is well known, complete and simply connected complex space forms are a complex projective space $P_n C$, a complex Euclidean space $C_n$ or a complex hyperbolic space $H_n C$ according as c > 0, c = 0 or c < 0.

  • PDF

Totally real submanifolds with parallel mean curvature vector in a complex space form

  • Ki, U-Hang;Kim, Byung-Hak;Kim, He-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.835-848
    • /
    • 1995
  • Let $M_n$(c) be an n-dimensional complete and simply connected Kahlerian manifold of constant holomorphic sectional curvature c, which is called a complex space form. Then according to c > 0, c = 0 or c < 0 it is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$.

  • PDF

ON REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM (II)

  • Pyo, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.369-383
    • /
    • 1994
  • A complex n-dimensional Kahler manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}$ (c). A complete and simply connected complex space form consists of a complex projective space $P_{n}$ C, a complex Euclidean space $C^{n}$ or a complex hyperbolic space $H_{n}$ C, according as c > 0, c = 0 or c < 0.(omitted)

  • PDF

A TRANSLATION OF AN ANALOGUE OF WIENER SPACE WITH ITS APPLICATIONS ON THEIR PRODUCT SPACES

  • Cho, Dong Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.749-763
    • /
    • 2022
  • Let C[0, T] denote an analogue of Weiner space, the space of real-valued continuous on [0, T]. In this paper, we investigate the translation of time interval [0, T] defining the analogue of Winer space C[0, T]. As applications of the result, we derive various relationships between the analogue of Wiener space and its product spaces. Finally, we express the analogue of Wiener measures on C[0, T] as the analogue of Wiener measures on C[0, s] and C[s, T] with 0 < s < T.

A Method for Constructing 3-Dimensional C-obstacles Using Free Arc (프리아크를 이용한3차원 형상 공간 장애물 구성 방법)

  • 이석원;임충혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.970-975
    • /
    • 2002
  • We suggests an effective method to construct time-varying C-obstacles in the 3-dimensional configuration space (C-space) using free arc. The concept of free arc was defined mathematically and the procedure to find free arc in the case off-dimensional C-space was derived in [1]. We showed that time-varying C-obstacles can be constructed efficiently using this concept, and presented simulation results for two SCARA robot manipulators to verify the efficacy of the proposed approach. In this paper, extensions of this approach to the 3-dimensional C-space is introduced since nearly all industrial manipulators are reasonably treated ill the too or three dimensional C-space f3r collision avoidance problem The free arc concept is summarized briefly and the method to find lice arc in the 3-dimensional f-space is explained. To show that this approach enables us to solve a practical collision avoidance problem simulation results f3r two PUMA robot manipulators are presented.

MINIMAL WALLMAN COVERS OF TYCHONOFF SPACES

  • Kim, Chang-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1009-1018
    • /
    • 1997
  • Observing that for any $\beta_c$-Wallman functor $A$ and any Tychonoff space X, there is a cover $(C_1(A(X), X), c_1)$ of X such that X is $A$-disconnected if and only if $c_1 : C_1(A(X), X) \longrightarrow X$ is a homeomorphism, we show that every Tychonoff space has the minimal $A$-disconnected cover. We also show that if X is weakly Lindelof or locally compact zero-dimensional space, then the minimal G-disconnected (equivalently, cloz)-cover is given by the space $C_1(A(X), X)$ which is a dense subspace of $E_cc(\betaX)$.

  • PDF

ON SPACES IN WHICH COMPACT-LIKE SETS ARE CLOSED, AND RELATED SPACES

  • Hong, Woo-Chorl
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.297-303
    • /
    • 2007
  • In this paper, we study on C-closed spaces, SC-closed spaces and related spaces. We show that a sequentially compact SC-closed space is sequential and as corollaries obtain that a sequentially compact space with unique sequential limits is sequential if and only if it is C-closed [7, 1.19 Proposition] and every sequentially compact SC-closed space is C-closed. We also show that a countably compact WAP and C-closed space is sequential and obtain that a countably compact (or compact or sequentially compact) WAP-space with unique sequential limits is sequential if and only if it is C-closed as a corollary. Finally we prove that a weakly discretely generated AP-space is C-closed. We then obtain that every countably compact (or compact or sequentially compact) weakly discretely generated AP-space is $Fr\acute{e}chet$-Urysohn with unique sequential limits, for weakly discretely generated AP-spaces, unique sequential limits ${\equiv}KC{\equiv}C-closed{\equiv}SC-closed$, and every continuous surjective function from a countably compact (or compact or sequentially compact) space onto a weakly discretely generated AP-space is closed as corollaries.

THE OVERLAPPING SPACE OF A CANONICAL LINEAR SYSTEM

  • Yang, Meehyea
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.461-468
    • /
    • 2004
  • Let W(z) be a power series with operator coefficients such that multiplication by W(z) is contractive in C(z). The overlapping space $L(\varphi)$ of H(W) in C(z) is a Herglotz space with Herglotz function $\varphi(z)$ which satisfies $\varphi(z)+\varphi^*(z^{-1})=2[1-W^{*}(z^{-1})W(z)]$. The identity ${}_{L(\varphi)}={-}_{H(W)}$ holds for every f(z) in $L(\varphi)$ and for every vector c.