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MINIMAL WALLMAN COVERS
OF TYCHONOFF SPACES

CHANG IL KM

ABSTRACT. Observing that for any B.-Wallman functor A and any
Tychonoff space X, there is a cover (C1(A(X), X), c1) of X such
that X is .A-disconnected if and only if ¢; : C1(A(X), X) — X
is a homeomorphism, we show that every Tychonoff space has the
minimal A-disconnected cover. We also show that if X is a weakly
Lindeldf or locally compact zero-dimensional space, then the mini-
mal G-disconnected (equivalently, cloz)-cover is given by the space
C1(A(X), X) which is a dense subspace of Ecc(8X).

1. Introduction

All spaces in this paper are Tychonoff spaces and 3X denotes the
Stone-Cech compactification of a space X.

It is known that minimal covers of some spaces are given by certain
filter spaces. Indeed, the minimal extremally disconnected cover EX of
a space X is given by the filter space {c : a is a fixed R(X)-ultrafilter}
([5]) and for any locally weakly Lindeldf space X, the minimal basically
disconnected (quasi-F, resp.) cover of X is characterized by the filter
space AX = {a : a is a fixed 0Z(X)#-ultrafilter} (QF(X) = {@: ais
a fixed Z(X)#-ultrafilter}, resp.) ([6]). In [4], it is shown that every
comapct space X has a minimal cloz-cover (Ec.(X), ¥¢(x)) and in (8]
(3], resp.), a theory of basically disconnected (quasi-F, resp.) covers
of Tychonoff spaces is developed and the relation between AX and
ABX (QF(X) and QF(8X), resp.) is explored. Henriksen, Vermeer,
and Woods ([4]) introduced the notion of Wallman sublattices and
showed that for any compact space X and Wallman sublattice A(X)
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of R(X), X has a Wallman cover £(A(X), X) of A(X). In fact, for any
compact space X, AX = L(¢Z(X)#), QF(X) = L(Z(X)#), and E..(X)
= L(G(X), X) (see [8], [3], and [4]).

Let Tych,. be the category of Tychonoff spaces and covering maps
and Lat the category of lattices and lattice hon:omorphisms. In this
paper, we first introduce the notion of 3,-Wallman functor A4 : Tych,
— Lat, that is, A is a contravariant functor such that for any X and f
'Y — Xin Tych,, A(X) is a Wallman sublattice of R(X), A(BX)x =
{ANX:AeABX)} = AX), A(f)(A) = ciy(inty (F71(A))) (A
€ A(X)), and a space X is A-disconnected (that is. for any A, B € A(X)
with A A B =0, AN B = 0) if and only if X is A-disconnected. We
show that for any 3.-Wallman functor A4, every space has the minimal
A-disconnected cover and if X is a weakly Lindelf or locally com-
pact zero-dimensional space, then the minimal G-disconnected (equiv-
alently, cloz) cover is given by the space C; (G(X), X) which is a dense
subspace of E..(3X). For the terminology, we refer to (1l and [2].

2. S-Wallman sublattices

Recall that the collection R(X) of all regular closed sets in a space
X, when partially ordered by inclusion, becomes a complete Boolean

algebra, in which the join, meet, and complementation operations are
defined as follows: if A € R(X) and {A; : i € I} C R(X), then

\/{A7 1 E ]} = ClX(U{Ai RS I})’

J\{Ai i€ I} = clx (intx (N{A; :i € /})), and
A =clx(X — A)

and a sublattice of R(X) is a subset of R(X) that contains @, X and is
closed under finite joins and meets.

DEFINITION 2.1. ([4]) Let X be a space and .4(X) a sublattice of
R(X). Then

(a) A(X) is said to be Ty with respect to X if for any A & A(X) and
x & A, there is B € A(X) such that = € intx(B) and A A B = 0,

(b) A(X) is said to be normal if for any A, B < A(X) with A A B
= 0, there are C, D in A(X) such that AAC =B AD = ¢ and C U
D = X, and
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(c) if A(X) satisfies (a) and (b) , then A(X) is said to be a Wallman
sublattice of R(X).

NOTATION 2.2. For any space X, let

(a) Z(X)# = {clx(intx(A)) : A is a zero-set in X}, and

(b) ¢Z(X)# denote the smallest o-complete Boolean subalgebra of
R(X) containing Z(X)#, and

(¢) G(X) = {clx(C) : C is a cozero-set set in X and there is a
cozero-set D in X such that C N D = 0 and C U D is dense in X}.

It is well-known that for any space X, R(X), Z(X)#, ¢Z(X)#, and
G(X) are Wallman sublattices of R(X) ([4]).

DEFINITION 2.3. Let (L, <) be a lattice with the top element 1 and
the bottom element 0 and F C L. Then F is said to be

(a) an L-filter if

(1) B £ F.

(2) for any a,b€ F, thereisce F with0 £ c < aAb.

B)ifae Fanda<be L, thenbeF.

(b) an L-ultrafilter if F is a maximal L-filter.

Let X be a compact space, A(X) a Wallman sublattice of R(X),
and L(A(X)) = {a : a is an A(X)-ultrafilter on X}. For any A €
A(X), let A" = {a e L(AX)): A € a}. Then {A*: A € AX)} is
a base for closed sets of some compact topology on £{A(X)). And let
L(A(X), X) be the subspace {(a,z) € L{A(X)) x X : z € Na} of the
product space L{A(X)) x X. Then the map ¥ 4 x) : L(AX), X) —
X (¥ 4(x)(a, x) = z) is a covering map, that is. a continuous perfect
irreducible map, and A(X) is a base for closed sets in X if and only if
the map k : L(A(X), X) — L(A(X)) defined by k((a, z)) = a is a

homeomorphism ([4]).

Recall that for any dense subspace X of a space Y, the map ¢ :
R(Y) — R(X) defined by ¢(A) = A N X (A < R(Y)) is a Boolean
isomorphism.

For any space X and A(X) C R(X), let A(X),; denote the set {A €
R(BX): AnX e AX)}

DEFINITION 2.4. Let X be a space and A(X) a Wallman sublattice
of R(X). Then A(X) is said to be §-Wallman if A(X)s is a Wallman
sublattice of R(3X).
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Let X be a space, A(X) a 8-Wallinan sublattice of R(X), and C; (A(X))
= {a: ais a fixed A(X)-ultrafilter on X}. For any A € A(X), let A+
= {a € Ci(A(X)) : A € a}. Then {AT : A € A(X)} is a base for
closed sets of some topology on C;(A(X)). And let C;(A(X), X) be
the subspace {(a,z) € C1(A(X)) » X : z € Na} of the product space
Ci1(A(X)) x X and W A(x),, \If;lzx)ﬂ(X) ~—— X the restriction and
corestriction of the map ¥ 4(x), : £(A(X)z, §X) -— BX with respect

to \I}A%X) (X) and X, respectively. Then ¥ 4(x),, 1s a covering map.

PROPOSITION 2.5. Let X be a space and A(X, a 3-Wallman sub-
lattice of R(X). Then there is a homeomorphism h : Ci(A(X), X) —
v, 1X) (X) and hence the map c¢1 == W a(x)s, ©h from Ci(A(X), X) to
X is a covering map.

Proof. Since A(X) and A(X)z are lattice isomorhpic, for any A(X)
ultrafilter a, there is a unique A(X)s-ultrafilter a3 = {A € A(X)z
A N X € a} and vice-versa. Let T \IJA(X) (X). Define a map h :
Ci(A(X), X) — T by h((a,z)) = (as,z). Then 4 is one-to-one and
onto.

Let A € A(X) and U be an open set in 8X. Then there is a unique
Ag € A(X)p with A = Ay N X. Let G = [(C1(A(X)) - A7) x (UN X)]
N C1(A(X),X) and H = (L(A(X)z) - A5) x U) N T. Take any (v,y) €
G. Then v ¢ A*; 75 & AL So h((1,9) = (v3,) = (L(A(X)s) - A3)
x U. Since W 4(x),((v3,¥)) =y € X, h((7,9)) = (v8,y) € T. Hence
h{G) C H.

Let (d3,2) € H. Since z € X and z € Nd, h=1((¢5,2)) = (6,2) € G.
Hence h(G) = H. Thus A is a homeomorphism and ¢; = ‘I’A(x)j o h
is a covering map. O

DEFINITION 2.6. Let Tych, be the category of Tychonoff spaces
and covering maps and Lat the category of lattices and lattice homo-
morphisms. Then a contravariant functor A : Tych, — Lat is said
to be 8-Wallman if

(a) for any X € Tych,, A(X) is a 3-Wallman sublattice of R(X)
and A(X)3 = A(8X),

(b) for any f: Y — X in Tych,, A(f)(A) = cly (inty (f1(A)))
(A e A(X)).
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Let R (Z%, 0Z#, G, resp.) : Tych. — Lat be a contravariant
functor taking each Tychonoff space X to the lattice R(X) (Z(X)#,
cZ(X)#, G(X), resp.) and each covering map f: Y — X to the
lattice homomorphism A(f) : A(X) — A(Y) for which A(f)(A) =
cly (inty (f71(A))) (A € A(X)), where A = R, Z#, ¢Z#, or G, resp.
Then R, Z#, 0Z%, and G are S-Wallman functors.

DEFINITION 2.7. Let A be a 8-Wallman functor and X a space.
Then X is called A-disconnected if for any A, B € A(X) with A A B
=0,ANnB=0.

Recall that a space X is called extremally disconnected (basically
disconnected, cloz, resp.) if every element in R(X) (¢Z(X)#, G(X),
resp.) is clopen in X and that a space X is called quasi-F if for any A,
B e Z(X)#, A AB = AN B. Hence a space X is extremally disconnected
(basically disconnected, quasi-F, cloz, resp.) space if and only if it is
R (cZ#, Z#, G, resp.)-disconnected.

THEOREM 2.8. Let A be a 3-Wallman functor and X a space. Then
X is A-disconnected if and only if ¢; : Ci(A(X), X) — X is a home-

omorphism.

Proof. (=) It is enough to show that ¢; is one-to-one. Take any
(a,x) # (v,y) in C(AX), X). If z # y, then (1((e,x)) = 2 # y =
c1((v,¥)). Suppose that a # ~, then there are A. B € A(X) such that
Aca, Bevyand AAB = 0. Since X is A-disconnected, AN B = ()
and hence ¢;((a,z)) =z # y = ¢;((7v,v)). So ¢y is one-to-one.

(«<=) Suppose that there are A, B € A(X) such that A A B = () and
ANB#0. Pickze ANB. Letag ={E € AX):z € intx(E)JU{A}.
Then there is an A(X)-ultrafilter «« with ag C «. Suppose that z ¢ Na,
then x ¢ E for some E € a. Since A(X) is T; with respect to X, there
is F € A(X) with z € intx (F) and EA F = 0. Since F € a, we have a
contradiction. Hence = € Na. Similarly there is a v € C(A(X)) with
z € Ny and B € 7. Hence (a,z) # (v,z) and so ¢; is not one-to-one.
Thus we have a contradiction. O

3. Minimal A-disconnected covers

Note that a space X is R (0Z%, Z#, G, resp. -disconnected if and
only if 3X is also R (0Z#, Z#, G, resp.)-disconnected
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DEFINITION 3.1. A g-Wallman functor A is said to be 3.-Wallman
if for any A-disconnected space X, 5X is A-disconnected.

Recall that a pair (Y, f) is called a cover of a space X if f: Y —
X is a covering map.

DEFINITION 3.2. Let A be a 3-Wallman functor and X a space.
Then

(a) a cover (Y, f) of X is called an A-disconnected cover of X if Y
is A-disconnected,

(b) an A-disconnected cover (Y, f) of X is called a minimal A-
disconnected cover of X if for any A-disconnected cover (K, g) of X,
there is a covering map h : K — Y with foh = g.

LEMMA 3.3. ([4]) Let X be a compact space and A(X) a Wallman
sublattice of R(X). Then (L(A(X), X), ¥ 4x)) is a cover of X such
that

(a) forany A, Be A(X) with A /. B=0, clpiax  x) (P2 x) (intx (A)))
N eleacx),x) (¥4 x, (intx (B))) = 0, and

(b) if f : Y — X is a covering map such that for any A, B € A(X)
with AA B =1, Clc(A(X)‘X)(f_l (jIltx(A))) M CI.C(A(X),X)(f_l(jntX (B)))
= 0, then there is a covering map g : ¥ — L{A(X), X) with f =
\PA(X) 0g.

For any (.-Wallman functor A and space X, the following diagram

CrA(X),X) —2 . X

| |

LIABX), 8X) 220X, gx

is a pullback in Top, where j is a dense embedding and Top is the
category of topological spaces and continuous maps. Using this and
the above lemma, we have the following:

THEOREM 3.4. Let A be a 3.-Wallman functor and X a space. If
(Y, f) is an A-disconnected cover of X, then there is a covering map g
Y — Ci(A(X), X) withc,og= f.
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COROLLARY 3.5. Let A be a (3.-Wallman functor and X a space. If
C1(A(X), X) is A-disconnected, then (C1(A(X), X), ¢1) is the minimal
A-disconnected cover of X.

In the following, for any space X, let (EX, 7wx ) denote the minimal
R-disconnected cover (absolute, or minimal extremally disconnected
cover) of X. Indeed, for any space X, (C1(R(X), X), ¢;) is the minimal
R-disconnected cover of X ([5)).

Note that for any 3-Wallman functor A and X € Tych,, (EX, 7x)
is an A-disconnected cover of X.

THEOREM 3.6. Let A be a .- Wallman functor. Then for any space
X, there is the mininmal A-disconnected cover (C(A(X), X), C4(x))
of X.

Proof. Let Co(A(X), X) = X, ¢} = 1x and a be an ordinal. Suppose
that for any ordinal g with 8 < a,

(i) for any ordinal v with v < 3, there is a cover (C, (A(X), X), ¢3)
of X, and

(ii) for any ordinals 8,y with § < v < 3, there is a covering map )
0 Cy(A(X), X) — Cs(A(X), X) with ¢f = ¢ o .

For any ordinals vy, 72, v3 with v < 2 < v3 < 3, since ¢§* = ¢J' o
P =cg' o (o ¢2?) and ¢4' is a covering map, P =clt o

Let o be a non-limit ordinal, then there is an ordinal 8 with o = 3
+ 1. Let C,(A(X), X) = C1(A(C3(A(X), X)), Cs(A(X), X)) and 3
=c1 1 Co(A(X), X) — C3(A(X), X). Then (i) and (ii) hold for a.

Let o be a limit ordinal. Let I = {5 : § is an ordinal with 3 < a}.
Define an inverse limit system D : I — Top as follows: for any 3 and
v < Bin1, let D(8) = Ca(A(X), X) and D(y < 8) = & : Cz(A(X),
X) — Cy(A(X), X). Let (Co(AiX), X), ¢§)s<a be the inverse limit
of D. Then (i) and (ii) hold for «.

By Theorem 3.4 and the transfinite induction, for any ordinal a,
there is a covering map f, : EX — C,(A(X), X)) with ¢§ o f, =
mx. Hence all spaces C,(A(X), X lie between X and EX and therefore
there is the smallest ordinal ag such that ¢t : Gy (A(X), X) —
Cao(A(X), X) is a homeomorphism. By Theorem 2.8, C,,(A(X), X)
is an A-disconnected space. Let C(A(X), X) = Cqu,(A(X), X) and
Caxy = ¢g° + C(A(X), X) — X. By Theorem 3 4 and the transfinite
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induction, (C(A(X), X), C4(x)) is the mininmal .A-disconnected cover
of X. 0

Let A and B be (3 -functors such that for any space X, B(X) C A(X).
If a space X is A-disconnected, then X is also B-disconnected. Using
this and the fact that if f, g, and h are covering maps with fog = foh,
then g = h, we have the following:

PROPOSITION 3.7. Let A and B be S.-functors such that for any
space X, B(X) C A(X). Then for any space X, there is a homeomor-
phismh : C(A(Y),Y) — C(A(X). X) with Cg(x,>C apy = C4x)yoh,
where Y = C(B(X), X).

Recall that a space X is weakly Lindeldf if everv open cover U of X
has a countable subfamily V of & with clx(UV) = X and that a space
X is called locally weakly Lindelof if every elemen: of X has a weakly
Lindeldf neighborhood in X.

In [6], it is shown that for any locally weakly Lindelsf space X,
(CL(Z(X)#, X), e1) ((C1(0Z(X)#, X), ¢1), resp.) is the minimal Z#
(0Z#, resp.)-disconnected cover of X. Now we will try to find suitable
conditions for a space X for which (C1(G(X), X). ¢1) is the minimal
G-disconnected cover of X.

LEMMA 3.8. Let A be a §-Wallman functor such that for any open
subspace S of a space Y, A(Y)s ={ANS:A e A(Y)} C A(S). Then
a space X is A-disconnected if and only if every element of X has an
A-disconnected open neighborhood in X.

Proof. Suppose that every element of X has an .A-disconnected open
neighborhood in X. Let A, B € A(X) with A A B = 0. Suppose that
there is an x € A N B. Let S be an A-disconnected open neighborhood
of  in X. Note that AN'S, BN S  A(S) and (A 1S) A (BN S) =0.
Since S is A-disconnected, A N B NS = (. This is a contradiction.
Hence X is an A-disconnected space. The converse is trivial. O

Recall that a space X is a G-disconnected (equivalently, cloz-) space
if and only if every dense cozero-set C in X is D-extendable in X, that
is, for any continuous map f : C —— D, there is a continuous map ¢ :
X — D with gj¢- = f, where D denotes the two point discrete space
(4,) and that for any dense weakly Lindeldf subspace X of a space Y
and A € Z(X)*, there is B € Z(Y)# with A = B X.
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LEMMA 3.9. If X is a clopen or dense weakly Lindeléf subspace of
a G-disconnected space Y, then X is also G-disconnected

Proof. Let X be a subspace of a G-disconnected space Y. Suppose
that X is clopen in Y and take any dense cozero-set C in X. Then C is a
cozero-set in Y and hence C U (Y - X) is a dense cozero-set in Y. Since
C and Y - X are disjoint clopen sets in C U (Y - X), C is D-extendable
in CU (Y - X). Sinec Y is G-disconnected, C U (Y - X) is D-extendable
in Y and hence C is D-extendable in Y. Thus X is G-disconnected.

Suppose that X is a dense weakly Lindelof subspace of Y. Let D, €
G(X), then there is a cozero-set Dz in X such that D; N Dy = 0 and
D; U D3 is dense in X. Since X is a dense weakly Lindelof subspace of
Y, there are cozero-sets Ei, E; in Y such that D; C cly (E;) (z = 1,2),
E; NE; = 0 and E; U E, is dense in Y. Hence cly (E;) N cly (Ez) = @
and thus cly (Dy) N cly (D3) = 0. Therefore X is G-disconnected. [

In [4], the minimal G-disconnected cover of a compact space X is
characterized by (L£(G(X), X), ¥,(x)). In the literature, for a compact
space X, £(G(X), X) is denoted by E_.(X).

It is known that if f : Y — X is a covering map and X is a weakly
Lindeldf space, then Y is weakly Lindelof ([3]).

THEOREM 3.10. If X is a locally compact zero-dimensional or weakly
Lindeldf space, then (Cy (G(X), X), ¢1) is the minimal G-disconnected
cover of X.

Proof. Let | = Wgx) @ Eeo(0X) — X and W = " 1(X) .

Suppose that X is a locally compact zero-dimensional space. Take
any y € W, then there is a clopen compact neighborhood B of I(y) in
X. Since B is clopen in 8X, I1(B) is clopen in E..(6X) and I7}(B) C
W. By Lemma 3.9, [71(B) is a G-disconnected cpen neighborhood of
y in W. Thus , by Lemma 3.8, W is G-disconnected and therefore, by
Corollary 3.5, (C1(G(X), X), ¢1) is the minimal G-disconnected cover of
X. If X is a weakly Lindeldf space, then W is a weakly Lindelof subspace
of E..(8X) and hence by Corollary 3.5 and Lemma 3.9, (C;(G(X), X),

c¢1) is the minimal G-disconnected cover of X. ]
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