MINIMAL WALLMAN COVERS OF TYCHONOFF SPACES

CHANG IL KIM

ABSTRACT. Observing that for any β_c -Wallman functor \mathcal{A} and any Tychonoff space X, there is a cover $(C_1(\mathcal{A}(X), X), c_1)$ of X such that X is \mathcal{A} -disconnected if and only if $c_1 : C_1(\mathcal{A}(X), X) \longrightarrow X$ is a homeomorphism, we show that every Tychonoff space has the minimal \mathcal{A} -disconnected cover. We also show that if X is a weakly Lindelöf or locally compact zero-dimensional space, then the minimal G-disconnected (equivalently, cloz)-cover is given by the space $C_1(\mathcal{A}(X), X)$ which is a dense subspace of $E_{cc}(\beta X)$.

1. Introduction

All spaces in this paper are Tychonoff spaces and βX denotes the Stone-Čech compactification of a space X.

It is known that minimal covers of some spaces are given by certain filter spaces. Indeed, the minimal extremally disconnected cover EX of a space X is given by the filter space $\{\alpha:\alpha \text{ is a fixed R(X)-ultrafilter}\}$ ([5]) and for any locally weakly Lindelöf space X, the minimal basically disconnected (quasi-F, resp.) cover of X is characterized by the filter space $\Lambda X = \{\alpha:\alpha \text{ is a fixed } \sigma Z(X)^{\#}\text{-ultrafilter}\}$ (QF(X) = $\{\alpha:\alpha \text{ is a fixed } Z(X)^{\#}\text{-ultrafilter}\}$, resp.) ([6]). In [4], it is shown that every comapet space X has a minimal cloz-cover ($E_{cc}(X), \Psi_{G(X)}$) and in [8] ([3], resp.), a theory of basically disconnected (quasi-F, resp.) covers of Tychonoff spaces is developed and the relation between ΛX and $\Lambda \beta X$ (QF(X) and QF(βX), resp.) is explored. Henriksen, Vermeer, and Woods ([4]) introduced the notion of Wallman sublattices and showed that for any compact space X and Wallman sublattice A(X)

Received July 8, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 54C10, 54D80, 54G05.

Key words and phrases: covering map, A-disconnected space, minimal cover.

This work was supported by GRANT No. KOSEF 951-0100-001-2 from the Korea Science and Engineering Foundation.

of R(X), X has a Wallman cover $\mathcal{L}(\mathcal{A}(X), X)$ of $\mathcal{A}(X)$. In fact, for any compact space X, $\Lambda X = \mathcal{L}(\sigma Z(X)^{\#})$, $QF(X) = \mathcal{L}(Z(X)^{\#})$, and $E_{cc}(X) = \mathcal{L}(G(X), X)$ (see [8], [3], and [4]).

Let \mathbf{Tych}_c be the category of Tychonoff spaces and covering maps and \mathbf{Lat} the category of lattices and lattice homomorphisms. In this paper, we first introduce the notion of β_c -Wallman functor \mathcal{A} : $\mathbf{Tych}_c \to \mathbf{Lat}$, that is, \mathcal{A} is a contravariant functor such that for any \mathbf{X} and $f: \mathbf{Y} \to \mathbf{X}$ in \mathbf{Tych}_c , $\mathcal{A}(\mathbf{X})$ is a Wallman sublattice of $\mathbf{R}(\mathbf{X})$, $\mathcal{A}(\beta\mathbf{X})_{\mathcal{X}} = \{\mathbf{A} \cap \mathbf{X} : \mathbf{A} \in \mathcal{A}(\beta\mathbf{X})\} = \mathcal{A}(\mathbf{X})$, $\mathcal{A}(f)(\mathbf{A}) = \mathbf{cl}_{\mathcal{Y}}(\mathrm{int}_{\mathcal{Y}}(f^{-1}(\mathbf{A})))$ (A $\in \mathcal{A}(\mathbf{X})$), and a space \mathbf{X} is \mathcal{A} -disconnected (that is, for any \mathbf{A} , $\mathbf{B} \in \mathcal{A}(\mathbf{X})$ with $\mathbf{A} \wedge \mathbf{B} = \emptyset$, $\mathbf{A} \cap \mathbf{B} = \emptyset$) if and only if $\beta\mathbf{X}$ is \mathcal{A} -disconnected. We show that for any β_c -Wallman functor \mathcal{A} , every space has the minimal \mathcal{A} -disconnected cover and if \mathbf{X} is a weakly Lindelöf or locally compact zero-dimensional space, then the minimal \mathbf{G} -disconnected (equivalently, cloz) cover is given by the space $\mathbf{C}_1(\mathbf{G}(\mathbf{X}), \mathbf{X})$ which is a dense subspace of $\mathbf{E}_{cc}(\beta\mathbf{X})$. For the terminology, we refer to [1] and [2].

2. β -Wallman sublattices

Recall that the collection R(X) of all regular closed sets in a space X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows: if $A \in R(X)$ and $\{A_i : i \in I\} \subseteq R(X)$, then

$$\bigvee \{A_i : i \in I\} = \operatorname{cl}_X(\cup \{A_i : i \in I\}),$$

$$\bigwedge \{A_i : i \in I\} = \operatorname{cl}_X(\operatorname{int}_X(\cap \{A_i : i \in I\})), \text{ and }$$

$$A' = \operatorname{cl}_X(X - A)$$

and a sublattice of R(X) is a subset of R(X) that contains \emptyset , X and is closed under finite joins and meets.

DEFINITION 2.1. ([4]) Let X be a space and $\mathcal{A}(X)$ a sublattice of R(X). Then

- (a) $\mathcal{A}(X)$ is said to be T_1 with respect to X if for any $A \in \mathcal{A}(X)$ and $x \notin A$, there is $B \in \mathcal{A}(X)$ such that $x \in \text{int}_X(B)$ and $A \wedge B = \emptyset$,
- (b) $\mathcal{A}(X)$ is said to be *normal* if for any A, B $\in \mathcal{A}(X)$ with A \wedge B $= \emptyset$, there are C, D in $\mathcal{A}(X)$ such that A \wedge C = B \wedge D $= \emptyset$ and C \cup D = X, and

(c) if $\mathcal{A}(X)$ satisfies (a) and (b), then $\mathcal{A}(X)$ is said to be a Wallman sublattice of R(X).

NOTATION 2.2. For any space X, let

- (a) $Z(X)^{\#} = \{ cl_X(int_X(A)) : A \text{ is a zero-set in } X \}$, and
- (b) $\sigma Z(X)^{\#}$ denote the smallest σ -complete Boolean subalgebra of R(X) containing $Z(X)^{\#}$, and
- (c) $G(X) = \{cl_X(C) : C \text{ is a cozero-set set in } X \text{ and there is a cozero-set } D \text{ in } X \text{ such that } C \cap D = \emptyset \text{ and } C \cup D \text{ is dense in } X\}.$

It is well-known that for any space X, R(X), $Z(X)^{\#}$, $\sigma Z(X)^{\#}$, and G(X) are Wallman sublattices of R(X) ([4]).

DEFINITION 2.3. Let (L, \leq) be a lattice with the top element 1 and the bottom element 0 and $F \subseteq L$. Then F is said to be

- (a) an *L*-filter if
- (1) $\emptyset \neq F$.
- (2) for any $a, b \in F$, there is $c \in F$ with $0 \neq c < a \land b$.
- (3) if $a \in F$ and $a \le b \in L$, then $b \in F$.
- (b) an L-ultrafilter if F is a maximal L-filter.

Let X be a compact space, $\mathcal{A}(X)$ a Wallman sublattice of R(X), and $\mathcal{L}(\mathcal{A}(X)) = \{\alpha : \alpha \text{ is an } \mathcal{A}(X)\text{-ultrafilter on } X\}$. For any $A \in \mathcal{A}(X)$, let $A^* = \{\alpha \in \mathcal{L}(\mathcal{A}(X)) : A \in \alpha\}$. Then $\{A^* : A \in \mathcal{A}(X)\}$ is a base for closed sets of some compact topology on $\mathcal{L}(\mathcal{A}(X))$. And let $\mathcal{L}(\mathcal{A}(X), X)$ be the subspace $\{(\alpha, x) \in \mathcal{L}(\mathcal{A}(X)) \times X : x \in \cap \alpha\}$ of the product space $\mathcal{L}(\mathcal{A}(X)) \times X$. Then the map $\Psi_{\mathcal{A}(X)} : \mathcal{L}(\mathcal{A}(X), X) \longrightarrow X$ ($\Psi_{\mathcal{A}(X)}(\alpha, x) = x$) is a covering map, that is, a continuous perfect irreducible map, and $\mathcal{A}(X)$ is a base for closed sets in X if and only if the map $k : \mathcal{L}(\mathcal{A}(X), X) \longrightarrow \mathcal{L}(\mathcal{A}(X))$ defined by $k((\alpha, x)) = \alpha$ is a homeomorphism ([4]).

Recall that for any dense subspace X of a space Y, the map ϕ : $R(Y) \longrightarrow R(X)$ defined by $\phi(A) = A \cap X$ ($A \in R(Y)$) is a Boolean isomorphism.

For any space X and $\mathcal{A}(X) \subseteq R(X)$, let $\mathcal{A}(X)_{\beta}$ denote the set $\{A \in R(\beta X) : A \cap X \in \mathcal{A}(X)\}$.

DEFINITION 2.4. Let X be a space and $\mathcal{A}(X)$ a Wallman sublattice of R(X). Then $\mathcal{A}(X)$ is said to be β -Wallman if $\mathcal{A}(X)_{\beta}$ is a Wallman sublattice of $R(\beta X)$.

Let X be a space, $\mathcal{A}(X)$ a β -Wallman sublattice of R(X), and $C_1(\mathcal{A}(X))$ = $\{\alpha : \alpha \text{ is a fixed } \mathcal{A}(X)\text{-ultrafilter on } X\}$. For any $A \in \mathcal{A}(X)$, let A^+ = $\{\alpha \in C_1(\mathcal{A}(X)) : A \in \alpha\}$. Then $\{A^+ : A \in \mathcal{A}(X)\}$ is a base for closed sets of some topology on $C_1(\mathcal{A}(X))$. And let $C_1(\mathcal{A}(X), X)$ be the subspace $\{(\alpha, x) \in C_1(\mathcal{A}(X)) \times X : x \in \cap \alpha\}$ of the product space $C_1(\mathcal{A}(X)) \times X$ and $\Psi_{\mathcal{A}(X)_{\beta_X}} : \Psi^{-1}_{\mathcal{A}(X)_{\beta}}(X) \longrightarrow X$ the restriction and corestriction of the map $\Psi_{\mathcal{A}(X)_{\beta}} : \mathcal{L}(\mathcal{A}(X)_{\beta}, \beta X) \longrightarrow \beta X$ with respect to $\Psi^{-1}_{\mathcal{A}(X)_{\beta}}(X)$ and X, respectively. Then $\Psi_{\mathcal{A}(X)_{\beta_X}}$ is a covering map.

PROPOSITION 2.5. Let X be a space and A(X) a β -Wallman sublattice of R(X). Then there is a homeomorphism $h: C_1(A(X), X) \longrightarrow \Psi^{-1}_{A(X)_{\beta}}(X)$ and hence the map $c_1 = \Psi_{A(X)_{\beta_X}} \circ h$ from $C_1(A(X), X)$ to X is a covering map.

Proof. Since $\mathcal{A}(X)$ and $\mathcal{A}(X)_{\beta}$ are lattice isomorphic, for any $\mathcal{A}(X)$ -ultrafilter α , there is a unique $\mathcal{A}(X)_{\beta}$ -ultrafilter $\alpha_{\beta} = \{A \in \mathcal{A}(X)_{\beta} : A \cap X \in \alpha\}$ and vice-versa. Let $T = \Psi^{-1}_{\mathcal{A}(X)_{\beta}}(X)$. Define a map $h : C_1(\mathcal{A}(X), X) \longrightarrow T$ by $h((\alpha, x)) = (\alpha_{\beta}, x)$. Then h is one-to-one and onto.

Let $A \in \mathcal{A}(X)$ and U be an open set in βX . Then there is a unique $A_{\beta} \in \mathcal{A}(X)_{\beta}$ with $A = A_{\beta} \cap X$. Let $G = [(C_1(\mathcal{A}(X)) - A^+) \times (U \cap X)] \cap C_1(\mathcal{A}(X),X)$ and $H = (\mathcal{L}(\mathcal{A}(X)_{\beta}) - A^*_{\beta}) \times U) \cap T$. Take any $(\gamma,y) \in G$. Then $\gamma \notin A^+$; $\gamma_{\beta} \notin A^*_{\beta}$. So $h((\gamma,y)) = (\gamma_{\beta},y) \in (\mathcal{L}(\mathcal{A}(X)_{\beta}) - A^*_{\beta}) \times U$. Since $\Psi_{\mathcal{A}(X)_{\beta}}((\gamma_{\beta},y)) = y \in X$, $h((\gamma,y)) = (\gamma_{\beta},y) \in T$. Hence $h(G) \subseteq H$.

Let $(\delta_{\beta}, z) \in H$. Since $z \in X$ and $z \in \cap \delta$, $h^{-1}((\delta_{\beta}, z)) = (\delta, z) \in G$. Hence h(G) = H. Thus h is a homeomorphism and $c_1 = \Psi_{\mathcal{A}(X)_{\beta_X}} \circ h$ is a covering map.

DEFINITION 2.6. Let \mathbf{Tych}_c be the category of Tychonoff spaces and covering maps and \mathbf{Lat} the category of lattices and lattice homomorphisms. Then a contravariant functor $\mathcal{A}: \mathbf{Tych}_c \longrightarrow \mathbf{Lat}$ is said to be β -Wallman if

- (a) for any $X \in \mathbf{Tych}_c$, $\mathcal{A}(X)$ is a β -Wallman sublattice of R(X) and $\mathcal{A}(X)_{\beta} = \mathcal{A}(\beta X)$,
- (b) for any $f: Y \longrightarrow X$ in \mathbf{Tych}_c , $\mathcal{A}(f)(A) = \mathrm{cl}_Y(\mathrm{int}_Y(f^{-1}(A)))$ $(A \in \mathcal{A}(X))$.

Let R (Z[#], σ Z[#], G, resp.) : **Tych**_c \longrightarrow **Lat** be a contravariant functor taking each Tychonoff space X to the lattice R(X) (Z(X)[#], σ Z(X)[#], G(X), resp.) and each covering map f : Y \longrightarrow X to the lattice homomorphism $\mathcal{A}(f)$: $\mathcal{A}(X)$ \longrightarrow $\mathcal{A}(Y)$ for which $\mathcal{A}(f)(A)$ = $\operatorname{cl}_Y(\operatorname{int}_Y(f^{-1}(A)))$ (A \in $\mathcal{A}(X)$), where $\mathcal{A} = R$, Z[#], σ Z[#], or G, resp. Then R, Z[#], σ Z[#], and G are β -Wallman functors.

DEFINITION 2.7. Let \mathcal{A} be a β -Wallman functor and X a space. Then X is called \mathcal{A} -disconnected if for any A, $B \in \mathcal{A}(X)$ with $A \wedge B = \emptyset$, $A \cap B = \emptyset$.

Recall that a space X is called extremally disconnected (basically disconnected, cloz, resp.) if every element in R(X) ($\sigma Z(X)^{\#}$, G(X), resp.) is clopen in X and that a space X is called quasi-F if for any A, $B \in Z(X)^{\#}$, $A \wedge B = A \cap B$. Hence a space X is extremally disconnected (basically disconnected, quasi-F, cloz, resp.) space if and only if it is R ($\sigma Z^{\#}$, $Z^{\#}$, G, resp.)-disconnected.

THEOREM 2.8. Let \mathcal{A} be a β -Wallman functor and X a space. Then X is \mathcal{A} -disconnected if and only if $c_1: C_1(\mathcal{A}(X), X) \longrightarrow X$ is a homeomorphism.

Proof. (\Rightarrow) It is enough to show that c_1 is one-to-one. Take any $(\alpha, x) \neq (\gamma, y)$ in $C_1(\mathcal{A}(X), X)$. If $x \neq y$, then $c_1((\alpha, x)) = x \neq y = c_1((\gamma, y))$. Suppose that $\alpha \neq \gamma$, then there are A, B $\in \mathcal{A}(X)$ such that A $\in \alpha$, B $\in \gamma$ and A \wedge B = \emptyset . Since X is \mathcal{A} -disconnected, A \cap B = \emptyset and hence $c_1((\alpha, x)) = x \neq y = c_1((\gamma, y))$. So c_1 is one-to-one.

(\Leftarrow) Suppose that there are A, B $\in \mathcal{A}(X)$ such that A \wedge B = \emptyset and A \cap B $\neq \emptyset$. Pick $x \in A \cap B$. Let $\alpha_0 = \{E \in \mathcal{A}(X) : x \in \operatorname{int}_X(E)\} \cup \{A\}$. Then there is an $\mathcal{A}(X)$ -ultrafilter α with $\alpha_0 \subseteq \alpha$. Suppose that $x \notin \cap \alpha$, then $x \notin E$ for some $E \in \alpha$. Since $\mathcal{A}(X)$ is T_1 with respect to X, there is $F \in \mathcal{A}(X)$ with $x \in \operatorname{int}_X(F)$ and $E \wedge F = \emptyset$. Since $F \in \alpha$, we have a contradiction. Hence $x \in \cap \alpha$. Similarly there is a $\gamma \in C_1(\mathcal{A}(X))$ with $x \in \cap \gamma$ and $B \in \gamma$. Hence $(\alpha, x) \neq (\gamma, x)$ and so c_1 is not one-to-one. Thus we have a contradiction.

3. Minimal A-disconnected covers

Note that a space X is R ($\sigma Z^{\#}$, $Z^{\#}$, G, resp.)-disconnected if and only if βX is also R ($\sigma Z^{\#}$, $Z^{\#}$, G, resp.)-disconnected

DEFINITION 3.1. A β -Wallman functor \mathcal{A} is said to be β_c -Wallman if for any \mathcal{A} -disconnected space X, β X is \mathcal{A} -disconnected.

Recall that a pair (Y, f) is called a *cover* of a space X if $f : Y \longrightarrow X$ is a covering map.

DEFINITION 3.2. Let \mathcal{A} be a β -Wallman functor and X a space. Then

- (a) a cover (Y, f) of X is called an A-disconnected cover of X if Y is A-disconnected,
- (b) an \mathcal{A} -disconnected cover (Y, f) of X is called a *minimal* \mathcal{A} -disconnected cover of X if for any \mathcal{A} -disconnected cover (K, g) of X, there is a covering map $h: K \to Y$ with $f \circ h = g$.

LEMMA 3.3. ([4]) Let X be a compact space and $\mathcal{A}(X)$ a Wallman sublattice of R(X). Then $(\mathcal{L}(\mathcal{A}(X), X), \Psi_{\mathcal{A}(X)})$ is a cover of X such that

- (a) for any $A, B \in \mathcal{A}(X)$ with $A \wedge B = \emptyset$, $cl_{\mathcal{L}(\mathcal{A}(X),X)}(\Psi_{\mathcal{A}(X)}^{-1}(int_X(A)))$ $\cap cl_{\mathcal{L}(\mathcal{A}(X),X)}(\Psi_{\mathcal{A}(X)}^{-1}(int_X(B))) = \emptyset$, and
- (b) if $f: Y \longrightarrow X$ is a covering map such that for any $A, B \in \mathcal{A}(X)$ with $A \wedge B = \emptyset$, $cl_{\mathcal{L}(\mathcal{A}(X),X)}(f^{-1}(\operatorname{int}_X(A))) \cap cl_{\mathcal{L}(\mathcal{A}(X),X)}(f^{-1}(\operatorname{int}_X(B)))$ = \emptyset , then there is a covering map $g: Y \longrightarrow \mathcal{L}(\mathcal{A}(X), X)$ with $f = \Psi_{\mathcal{A}(X)} \circ g$.

For any β_c -Wallman functor \mathcal{A} and space X, the following diagram

$$C_1(\mathcal{A}(X), X) \xrightarrow{c_1} X$$

$$\downarrow j \qquad \qquad \downarrow \beta \downarrow$$

$$\mathcal{L}(\mathcal{A}(\beta X), \beta X) \xrightarrow{\Psi_{\mathcal{A}(\beta X)}} \beta X.$$

is a pullback in **Top**, where j is a dense embedding and **Top** is the category of topological spaces and continuous maps. Using this and the above lemma, we have the following:

THEOREM 3.4. Let \mathcal{A} be a β_c -Wallman functor and X a space. If (Y, f) is an \mathcal{A} -disconnected cover of X, then there is a covering map $g: Y \longrightarrow C_1(\mathcal{A}(X), X)$ with $c_1 \circ g = f$.

COROLLARY 3.5. Let \mathcal{A} be a β_c -Wallman functor and X a space. If $C_1(\mathcal{A}(X), X)$ is \mathcal{A} -disconnected, then $(C_1(\mathcal{A}(X), X), c_1)$ is the minimal \mathcal{A} -disconnected cover of X.

In the following, for any space X, let (EX, π_X) denote the minimal R-disconnected cover (absolute, or minimal extremally disconnected cover) of X. Indeed, for any space X, $(C_1(R(X), X), c_1)$ is the minimal R-disconnected cover of X ([5]).

Note that for any β -Wallman functor \mathcal{A} and $X \in \mathbf{Tych}_c$, (EX, π_X) is an \mathcal{A} -disconnected cover of X.

THEOREM 3.6. Let \mathcal{A} be a β_c -Wallman functor. Then for any space X, there is the minimal \mathcal{A} -disconnected cover $(C(\mathcal{A}(X), X), C_{\mathcal{A}(X)})$ of X.

Proof. Let $C_0(\mathcal{A}(X), X) = X$, $c_0^0 = 1_X$ and α be an ordinal. Suppose that for any ordinal β with $\beta < \alpha$,

- (i) for any ordinal γ with $\gamma \leq \beta$, there is a cover $(C_{\gamma}(\mathcal{A}(X), X), c_0^{\gamma})$ of X, and
- (ii) for any ordinals δ, γ with $\delta < \gamma \leq \beta$, there is a covering map c_{δ}^{γ} : $C_{\gamma}(\mathcal{A}(X), X) \longrightarrow C_{\delta}(\mathcal{A}(X), X)$ with $c_{0}^{\gamma} = c_{0}^{\delta} \circ c_{\delta}^{\gamma}$.

For any ordinals γ_1 , γ_2 , γ_3 with $\gamma_1 < \gamma_2 < \gamma_3 \le \beta$, since $c_0^{\gamma_3} = c_0^{\gamma_1} \circ c_{\gamma_1}^{\gamma_3} = c_0^{\gamma_1} \circ (c_{\gamma_2}^{\gamma_1} \circ c_{\gamma_2}^{\gamma_3})$ and $c_0^{\gamma_1}$ is a covering map, $c_{\gamma_1}^{\gamma_3} = c_{\gamma_1}^{\gamma_2} \circ c_{\gamma_2}^{\gamma_3}$.

Let α be a non-limit ordinal, then there is an ordinal β with $\alpha = \beta + 1$. Let $C_{\alpha}(\mathcal{A}(X), X) = C_{1}(\mathcal{A}(C_{\beta}(\mathcal{A}(X), X)), C_{\beta}(\mathcal{A}(X), X))$ and $c_{\beta}^{\alpha} = c_{1} : C_{\alpha}(\mathcal{A}(X), X) \longrightarrow C_{\beta}(\mathcal{A}(X), X)$. Then (i) and (ii) hold for α .

Let α be a limit ordinal. Let $I = \{\beta : \beta \text{ is an ordinal with } \beta < \alpha\}$. Define an inverse limit system $D : I \longrightarrow \mathbf{Top}$ as follows: for any β and $\gamma < \beta$ in I, let $D(\beta) = C_{\beta}(\mathcal{A}(X), X)$ and $D(\gamma \leq \beta) = c_{\gamma}^{\beta} : C_{\beta}(\mathcal{A}(X), X) \longrightarrow C_{\gamma}(\mathcal{A}(X), X)$. Let $(C_{\alpha}(\mathcal{A}(X), X), c_{\beta}^{\alpha})_{\beta < \alpha}$ be the inverse limit of D. Then (i) and (ii) hold for α .

By Theorem 3.4 and the transfinite induction, for any ordinal α , there is a covering map $f_{\alpha}: \operatorname{EX} \longrightarrow \operatorname{C}_{\alpha}(\mathcal{A}(X), X))$ with $c_{0}^{\alpha} \circ f_{\alpha} = \pi_{X}$. Hence all spaces $\operatorname{C}_{\alpha}(\mathcal{A}(X), X)$ lie between X and EX and therefore there is the smallest ordinal α_{0} such that $c_{\alpha_{0}}^{\alpha_{0}+1}: \operatorname{C}_{\alpha_{0}+1}(\mathcal{A}(X), X) \longrightarrow \operatorname{C}_{\alpha_{0}}(\mathcal{A}(X), X)$ is a homeomorphism. By Theorem 2.8, $\operatorname{C}_{\alpha_{0}}(\mathcal{A}(X), X)$ is an \mathcal{A} -disconnected space. Let $\operatorname{C}(\mathcal{A}(X), X) = \operatorname{C}_{\alpha_{0}}(\mathcal{A}(X), X)$ and $\operatorname{C}_{\mathcal{A}(X)} = c_{0}^{\alpha_{0}}: \operatorname{C}(\mathcal{A}(X), X) \longrightarrow X$. By Theorem 3.4 and the transfinite

induction, $(C(\mathcal{A}(X), X), C_{\mathcal{A}(X)})$ is the minimal \mathcal{A} -disconnected cover of X.

Let \mathcal{A} and \mathcal{B} be β_c -functors such that for any space X, $\mathcal{B}(X) \subseteq \mathcal{A}(X)$. If a space X is \mathcal{A} -disconnected, then X is also \mathcal{B} -disconnected. Using this and the fact that if f, g, and h are covering maps with $f \circ g = f \circ h$, then g = h, we have the following:

PROPOSITION 3.7. Let \mathcal{A} and \mathcal{B} be β_c -functors such that for any space X, $\mathcal{B}(X) \subseteq \mathcal{A}(X)$. Then for any space X, there is a homeomorphism $h: C(\mathcal{A}(Y), Y) \longrightarrow C(\mathcal{A}(X), X)$ with $C_{\mathcal{B}(X)} \supset C_{\mathcal{A}(Y)} = C_{\mathcal{A}(X)} \circ h$, where $Y = C(\mathcal{B}(X), X)$.

Recall that a space X is weakly Lindelöf if every open cover \mathcal{U} of X has a countable subfamily \mathcal{V} of \mathcal{U} with $\operatorname{cl}_X(\cup \mathcal{V}) = X$ and that a space X is called locally weakly Lindelöf if every element of X has a weakly Lindelöf neighborhood in X.

In [6], it is shown that for any locally weakly Lindelöf space X, $(C_1(Z(X)^\#, X), c_1)$ ($(C_1(\sigma Z(X)^\#, X), c_1)$, resp.) is the minimal $Z^\#$ ($\sigma Z^\#$, resp.)-disconnected cover of X. Now we will try to find suitable conditions for a space X for which $(C_1(G(X), X), c_1)$ is the minimal G-disconnected cover of X.

LEMMA 3.8. Let \mathcal{A} be a β -Wallman functor such that for any open subspace S of a space Y, $\mathcal{A}(Y)_S = \{A \cap S : A \in \mathcal{A}(Y)\} \subseteq \mathcal{A}(S)$. Then a space X is \mathcal{A} -disconnected if and only if every element of X has an \mathcal{A} -disconnected open neighborhood in X.

Proof. Suppose that every element of X has an \mathcal{A} -disconnected open neighborhood in X. Let A, B $\in \mathcal{A}(X)$ with A \wedge B = \emptyset . Suppose that there is an $x \in A \cap B$. Let S be an \mathcal{A} -disconnected open neighborhood of x in X. Note that $A \cap S$, $B \cap S \in \mathcal{A}(S)$ and $(A \cap S) \wedge (B \cap S) = \emptyset$. Since S is \mathcal{A} -disconnected, $A \cap B \cap S = \emptyset$. This is a contradiction. Hence X is an \mathcal{A} -disconnected space. The converse is trivial.

Recall that a space X is a G-disconnected (equivalently, cloz-) space if and only if every dense cozero-set C in X is \underline{D} -extendable in X, that is, for any continuous map $f: C \longrightarrow D$, there is a continuous map $g: X \longrightarrow D$ with $g|_C = f$, where D denotes the two point discrete space ([4]) and that for any dense weakly Lindelöf subspace X of a space Y and $A \in Z(X)^{\#}$, there is $B \in Z(Y)^{\#}$ with $A = B \cap X$.

Lemma 3.9. If X is a clopen or dense weakly Lindelöf subspace of a G-disconnected space Y, then X is also G-disconnected

Proof. Let X be a subspace of a G-disconnected space Y. Suppose that X is clopen in Y and take any dense cozero-set C in X. Then C is a cozero-set in Y and hence $C \cup (Y - X)$ is a dense cozero-set in Y. Since C and Y - X are disjoint clopen sets in $C \cup (Y - X)$, C is \underline{D} -extendable in $C \cup (Y - X)$. Since Y is G-disconnected, $C \cup (Y - X)$ is \underline{D} -extendable in Y and hence C is \underline{D} -extendable in Y. Thus X is G-disconnected.

Suppose that X is a dense weakly Lindelöf subspace of Y. Let $D_1 \in G(X)$, then there is a cozero-set D_2 in X such that $D_1 \cap D_2 = \emptyset$ and $D_1 \cup D_2$ is dense in X. Since X is a dense weakly Lindelöf subspace of Y, there are cozero-sets E_1 , E_2 in Y such that $D_i \subseteq \operatorname{cl}_Y(E_i)$ (i = 1, 2), $E_1 \cap E_2 = \emptyset$ and $E_1 \cup E_2$ is dense in Y. Hence $\operatorname{cl}_Y(E_1) \cap \operatorname{cl}_Y(E_2) = \emptyset$ and thus $\operatorname{cl}_Y(D_1) \cap \operatorname{cl}_Y(D_2) = \emptyset$. Therefore X is G-disconnected. \square

In [4], the minimal G-disconnected cover of a compact space X is characterized by $(\mathcal{L}(G(X), X), \Psi_{G(X)})$. In the literature, for a compact space X, $\mathcal{L}(G(X), X)$ is denoted by $E_{cc}(X)$.

It is known that if $f: Y \to X$ is a covering map and X is a weakly Lindelöf space, then Y is weakly Lindelöf ([3]).

THEOREM 3.10. If X is a locally compact zero-dimensional or weakly Lindelöf space, then $(C_1(G(X), X), c_1)$ is the minimal G-disconnected cover of X.

Proof. Let
$$l = \Psi_{G(\beta X)} : \mathbb{E}_{cc}(\beta X) \longrightarrow \beta X$$
 and $W = l^{-1}(X)$.

Suppose that X is a locally compact zero-dimensional space. Take any $y \in W$, then there is a clopen compact neighborhood B of l(y) in X. Since B is clopen in βX , $l^{-1}(B)$ is clopen in $E_{cc}(\beta X)$ and $l^{-1}(B) \subseteq W$. By Lemma 3.9, $l^{-1}(B)$ is a G-disconnected open neighborhood of y in W. Thus, by Lemma 3.8, W is G-disconnected and therefore, by Corollary 3.5, $(C_1(G(X), X), c_1)$ is the minimal G-disconnected cover of X. If X is a weakly Lindelöf space, then W is a weakly Lindelöf subspace of $E_{cc}(\beta X)$ and hence by Corollary 3.5 and Lemma 3.9, $(C_1(G(X), X), c_1)$ is the minimal G-disconnected cover of X.

References

- [1] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and concrete categories, John Wiley and Sons Inc., New York, 1990.
- [2] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
- [3] M. Henriksen, J. Vermeer and R. G. Woods, Quasi-F-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-804.
- [4] M. Henriksen, J. Vermeer and R. G. Woods, Wallman covers of compact spaces, Dissertationes Mathematicae 283 (1989), 5-31.
- [5] S. Iliadis, Absolute of Hausdorff spaces, Sov. Math. Dokl. 4 (1963), 295-298.
- [6] C. I. Kim, Minimal covers and filter spaces, Topol. and its Appl. 72 (1966), 31-37.
- [7] J. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin, 1988.
- [8] J. Vermeer, The smallest basically disconnected preimage of a space, Topol. Appl. 17 (1984), 217-232.

Department of Mathematics Education Dankook University Seoul 140-714, Korea