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ON REAL HYPERSURFACES OF A
COMPLEX HYPERBOLIC SPACE

Eun-HEE KANG AND U-Hang K1

0. Introduction

An n-dimensional complex space form M,(c) is a Kaehlerian mani-
fold of constant holomorphic sectional curvature c¢. As is well known,
complete and simply connected complex space forms are a complex
projective space P,C, a complex Euclidean space C,, or a complex hy-
perbolic space H,,C according as ¢ > 0,c=0or ¢ < 0.

Let M be a real hypersurfaces of M,(c),c # 0. Then M has an
almost contact metric structure (¢, £, 7, g) induced from the Kaehlerian
metric and complex structure J of M,(c). The structure vector ¢ is
said to be principal if A§ = o€, where A is the shape operator in the
direction of the unit normal C and a = n(A¢). We denote by V and
S, the Levi-Civita connection with respect to the Riemannian metric
tensor g and the Ricci tensor of type (1,1) on M respectively. Takagi
([12]) classified all homogeneous real hypersurfaces of P,C as six model
spaces which are said to be A1, A2, B, C, D and E, and Cecil-Ryan ([3])
and Kimura ([6]) proved that they are realized as the tubes of constant
radius over Kaehlerian submanifolds. Also Berndt ([1],[2]) showed that
all real hypersurfaces with constant principal curvatures of a complex
hyperbolic space H,,C are realized as the tubes of constant radius over
certain submanifolds when the structure vector ¢ is principal. Nowadays
in H,C they are said to be of type Ag, A1, A2 and B.
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Under certain conditions for the Ricci tensor of M, real hypersurfaces
of a complex space form were studied by many geometers [4], [5], [7],
(8], [9], [10] etc. In the present paper, we study real hypersurfaces
of a complex space form M, (c),c # 0 which satisfy LS = 0, where
L¢ is the Lie derivative in the direction of the structure vector £. It
is remarkable that the condition L¢S = 0 in a real hypersurface of
M, (¢), ¢ # 0 implies the following equation :

156 — 65|17 + Sl Vee]? = 0

(See (2.4) in section 2 or (8]). Furthermore, Kimura and Maeda ([8])
proved a local classification theorem for real hypersurfaces of P,,C which
satisfy L¢S = 0. On the other hand, for real hypersurfaces of H,C we
proved ([4]) that

THEOREM A. Let M be a (2n — 1)-dimensional real hypersurface
of H,C,n > 3. If the structure vector £ is principal and M satisfies
L¢S =0, then M is congruent to one of the following spaces :

(Ag) a horosphere in H,C, i.e., a Montiel tube,
(A1) a tube of a totally geodesic hyperplane H,C(k =0 or n — 1),
(A2) a tube of a totally geodesic H C(1 < k <n — 2).

The main purpose of the present paper is to improve the above the-
orem. More specifically we prove

THEOREM. Let M be a real hypersurface of H,C. If it satisfies
L¢S =0 and S¢ = of for some function o on M, then { is principal.

1. Preliminaries

Let M be a real hypersurface of a complex n-dimensional complex
space form M, (c) of constant holomorphic sectional curvature ¢, and
let C be a unit normal vector field on a neighborhood of a point z in
M. We denote by V and V the Riemannian connection in M,,(c) and in
M respectively. Then by the Gauss formula, we have the relationship
between V and V : For any vector fields X and Y on M

VxY =VxY +g(AX,Y)C,
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where g is the Riemannian metric tensor of M induced from that of
M, (c) and A denotes the shape operator with respect to C of M in
M, (c). Furthermore, we have another equation which is called the
Weingarten formula :

VxC =-AX.

For any local vector field X on a neighborhood of z in M, the trans-
formations of X and C under the complex structure J in M, (c) can be
given by

JX =X +n(X)C, JC =--¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle
TM of M, where  and £ denote a 1-form and a vector field on a
neighborhood of = in M respectively. Then it is seen that g(&, X) =
n(X). The set of tensors (¢,&,7, g) is called an almost contact metric
structure on M. They satisfy the following

¢’ =~-I+nQ& ¢£=0, n(dX)=0 n&) =1,

where I denotes the identity transformation and ® denotes the tensor
product.

Furthermore the covariant derivatives of the structure tensors are given
by

(1.1) (Vx¢)Y =n(Y)AX — g(AX,Y){, Vx{=¢AX.
Since the ambient space is of constant holomorphic sectional curva-
ture ¢, equations of the Gauss and Codazzi are respectively given as

follows ;

(1.2)
R(X,Y)Z =c{g(Y,Z)X — g(X, Z)Y + g(9Y, 2)¢X — g(¢X, Z)pY
—2g(¢X,Y)$Z}/4 + g(AY, Z)AX - g(AX, Z)AY,

(1.3) (VxA)Y — (VY A)X =c{n(X)¢Y —n(Y)¢X - 29(¢X,Y)E}/4,
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where R denotes the Riemannian curvature tensor of M and VxA
denotes the covariant derivative of the shape operator A with respect
to X.

The Ricci tensor S’ of M is a tensor of type (0, 2) given by §'(X,Y) =
tr{Z — R(Z,X)Y}. Also it may be regarded as the tensor of type (1,1)
and denoted by S : TM — TM ; it satisfies S'(X,Y) = ¢(SX,Y). From
(1.3) we see that the Ricci tensor S of M is given by

(1.4) S=c{@n+ I —-3n®E}/4+hA-- A%
where we have put h = trA. Moreover, using (1.2) we get
(1.5)

(Vx8)Y = —3c{g(¢AX,Y)E +n(Y)pAX}/4
+dh(X)AY + (hI — A)}(VxA)Y — (VxA)AY,
where d denotes the exterior differential.

In what follows, to write our formulas in convention forms, we denote
a = g(A&, &) , B = g(A%¢, &) and Vf by the gradient vector field of a
function f . If we put U = V&, then U is orthogonal to the structure
vector £. Because of properties of the almost contact metric structure
and the second equation of (1.1), we can get

(1.6) oU = —Af + af,

which shows that g(U,U) = 8 — a?. By the definition of U and the
second equation of (1.1), we easily see that

(1.7) 9(VxE,U) = g(A%, X) — ag(AE, X).

On the other hand, differentiating (1.6) covariantly and making use
of (1.1), we find

(1.8)
n(X)g(AU,Y) + g(¢X,VyU) = g((Vy A) X, &) — g(ApAX,Y)
-n(X)9(Va,Y) + ag(A4X,Y),

which enable us to obtain

(1.9) 9((Vx A), §) = 2(AX,U) + g(Va, X).
By the definition of U, (1.1), (1.8) and (1.9) it is verified that
(1.10) VU = 3¢AU + a Al — BE + ¢V
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2. Real hypersurfaces of H,C satisfying L5 =0

In the sequel we assume that the Ricci tensor S satisfies
L{S = 0,

where L, denotes the Lie derivative with respect to the structure vector
¢. By definition we have

LeS(X) =Le(SX)— SLeX

for any vector field X on M and hence using (1.1) we obtain
(2.1) VeS = pAS — S¢pA.
Thus it follows that we get
(2.2) (Ap — $A)S = S(Ap — $A).
From (1.4) we have
(2.3) S¢ — ¢S = h(Ap — pA) — A% + ¢pA>.

Using the last two equations, it is seen that

(Ad— $A4)(S¢ — ¢S) = 0.

Thus, by applying A¢ to (2.2), then we have
(2.4) 156~ 6] + el Vet = 0.
Therefore, if ¢ > 0 , then we have S¢ = ¢S and A{ = af (cf [8]).

Let M be a real hypersurface of H,,C of constant holomorphic sec-
tional curvature —4. Now, suppose that
(2.5) S¢€ = o¢
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for some function o. Then by (1.4) we have
(2.6) A% = RAE + (B - ha)g,
where we put
(2.7) B—ha=—-0—2(n-1).
Differentiating (2.5) covariantly along M, we find
(VxS) + SVxE = (Xo)f+ V&

Since we can, using (2.1) and (2.5), see that (VS)¢ = 0, if we replace
X by £, then we obtain

SU = do(£)¢ +0oU.
On the other hand, applying £ to the both sides of (2.2), and making

use of the second equation of (1.1) and (2.5), we obtain SU = ¢U and
hence

(2.8) do(€) = 0,i.e.,d(B — ha)(§) =0
Thus it follows that we have
(2.9) hAU — A*U = (ha — B+ 3)U,

where we have used (1.4) and (2.7).

We put A = af + uW, where W is a unit vector field orthogonal to
§. Then from (1.6) we see that U = u¢W, and W is also orthogonal to
U. We assume that . # 0 on M, that is, £ is not a principal curvature
vector and we put & = {p € M|u(p) # 0}. Then  is an open subset
of M and from now on we discuss our arguments on 2. Making use of
(2.6), we find

(2.10) PAW = (h — a)AE + (8 — ah)é
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and hence
AW — hAW = (B — ah)W

because of u # 0. From this and (1.4), it follows that we get
(2.11) SW=—-{2n+1+ 03— ah}W.

If we apply W to the both sides of (2.2) and take account of (1.1),
(2.10) and (2.11), then we obtain

2n+1+8—-ah){AU — (h—a)U} = (h — a)SU — SAU,
which together with (1.4) and (2.9) implies that
(2.12) AU = (h — a)U.
Accordingly (2.9) means that
(2.13) g(U,U)=8~-a*=3.
Therefore, (2.6) turns out to be
A%¢ = hAE + (a? — ha + 3)¢.

Differentiating this covariantly along 2 and using the second equation
of (1.1), we find

(2.14)
(Vx A)AE + A(VxA)E + A2pAX — hAPAX

= dh(X)A¢ + h(Vx A)E + d(a? — ha)(X)E + (@ ~ ha + 3)¢A.
From (2.14), using (1.9) and (2.12) we obtain
(VeA)AE =U + aVa + h(h — a)U.
Replacing X by £, we also have from (2.14)
(Ve A)AE — 3a(h — a)U + AVa = dh(£) AL + hVa + (@ — ha + 3)U,
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where we have used (1.3), (2.7), (2.8) and (2.12). Combining the last
two equations, it follows that

(2.15)  dh()A¢ = AVa — (h — a)Va + (h? — 3ah + 202 — 2)U,
which enable us to obtain
(2.16) h? — 3ah +2a% =2
because of g(A&,U) = 0 and (2.12). Thus it is seen that
(2h — 3a)Vh + (4o — 3h)Va = 0,
which shows that
(2h — 3a)dh(&) + (4a — 3h)da(£) = 0.
On the other hand, because of (2.8) and (2.13), we obtain
(2a — h)da(€) — adh(€) = 0.

From the last two equations, we have (h — a)da(£) = 0 and hence
da(€) = 0 by virtue of (2.16). Therefore we have

(2.17) dh(€) = 0.
In facts, suppose that 2; be the set of points at which dh(£) # 0 in

and €2, is not empty. Then we have o = 0 and consequently A¢ = 0 in
) because of (2.15) and (2.16). This is impossible in Q.

3. Proof of Theorem

Let M be a real hypersurface of H,C satisfying L¢S = 0 and S¢ =
€. Then we have SU = oU and hence

9((S¢ — ¢S)U, W) = 3,
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where we have used (2.7) and (2.11). Therefore we see, using (2.4) with
¢ = —4, that

1S¢ — ¢S — p(u@ W +wU)||I* =0,

where we have defined u(X) = ¢g(X,U) and w(X) = g(X, W). Accord-
ingly we have

(3.1) (S¢ — ¢S)X = g(¢X,U)U — g(X,U)oU.
Using (1.4), it can be rewritten as
(3.2) (hRA — A2)pX — ¢p(hA — AHX = TX,
where we have put
(3.3) TX = g(¢X,U)U — g(X,U)U.
Because of (1.7) and (2.13), we have
9(Vx€,U) = (h — a)g(4€, X) + (@® + 3 — ha)n(X).
Thus, if we take account of (1.6), (2.12) and (3.1), then we obtain
SpA =¢SA+ (h— )T +3n& U.

Thus (2.1) turns out to be
(3.4) VeS + (h—a)T =0.

On the other hand, by (1.5) and (2.17) we have

(VeS)X =3u(X)E +n(X)U + h(VeA) X — AV A)X — (Ve A)AX.

Hence (3.4) becomes
(3.5)
h(VeA)X — A(VA)X = (Ve A)AX — (h—o)TX = 3{n(X)U +u(X)¢},
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or using the Codazzi equation (1.3),
h(VxA) — A(VxA) — h¢pX + ApX
= (VeA)AX — (h— a)TX = 3{n(X)U + u(X)¢}.
Combining this with (2.14), it follows that we obtain
(VxA)AE — (Ve A)AX

= —A?PAX + hAPAX + dh(X)AE + d(a? — ha)(X)E
(3.6) + (a® — ha+ 3)pAX + h¢X — ApX — (h— a)TX

= 3{n(X)U + u(X)¢}.

By differentiating (3.2) covariantly along € and using (1.1) and (1.3),
we find

(VxT)YY — (VyT)X
= dh(Y)pAX — dh(X)pAY — h{n(X)(Y —n(Y)¢)
— (Y} (X —n(X)&)} — n(X)pAsY + n(V)pAsX
+29(¢ X, Y)U + d(VxA)AY — ¢(Vy A)AX
+ dh(X)AdY +h(VxA)Y — (VxA)ASY — A(Vx A)pY
—dh(Y)A¢X — h(Vy A)pX + (Vy A)A¢pX + A(Vy A)pX
+ (ha — B){N(X)AY —n(Y)AX} +n(Y)(RA2X — A3X)
~n(X)(RA%Y — A%Y).
Putting ¥ = £ in above equation, we obtain
(VxT)§ - (VeT)X
= —dh(X)U + h(X — (X)) + hA%2X — A%X
+ (@ + 3 — ha)AX + ¢APX + ¢((Vx A)AE — (Ve A)AX)
—{M(VeA)pX — (Ve A)AdpX — A(VcA)pX ],
where we have used (2.6), (2.13) and (2.17). If we substitute (3.5) and
(3.6) into the last equation, then we find
(VxT)E — (VeT)X = hA’X — A3X — pA%0AX + h¢pApAX

(3.7) + (@2 + 3 — ha)n(AX)E — 2(h — a){u(X)U + g(¢X,U)oU}

182



On real hypersurfaces of a complex hyperbolic space

because of (3.3). Putting X = U in (3.7) and making use of (2.6) and
(2.12), we get

(3.8) (VuT)E — (VeT)U = —3(h — a)U.

Using the same method as that used to derive (3.8) from (3.2), we
can derive from (3.3) the following :

(VuT)e — (VeT)U = 3(h — a)U + da(U)U — 3Va,

where we have used (1.1), (1.6) and (1.10). From this and (3.8) it
follows that we obtain

Va = %da(U)U +2(h — )l

which together with (2.13) gives h = a in Q. Thus, by (2.16) it is
contradictory. Hence we conclude that  is empty. It completes the
proof of main theorem.
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