• 제목/요약/키워드: C-flux

검색결과 1,782건 처리시간 0.027초

하천유지용수와 지천 유입에 따른 도시하천 양재천의 수리화학적 변화 연구 (Hydrochemical Effects of Tributaries and Discharged Waters in the Yangjae Stream Flowing Peri-urban Area)

  • 김연태;정의진;박종훈;우남칠
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.678-687
    • /
    • 2018
  • The purpose of this study was to understand the unique and complicated feature of urban stream receiving various inflows. The Yangjae stream, the second tier of the Han River, runs through the southern parts of Seoul, Korea and its middle part flows on the boundary of Seoul where land use is actively changing. Stream flow was greatly influenced by rainfall. Other than rainfall events, effluent discharge from wastewater treatment plant (WWTP) comprised 51 % of stream flux. As a result, majority ions water chemistry was changed at the receiving zone of the discharged effluent (Zone A). Its contribution increased to 69.9 % at the second sampling period with low stream flow. In the middle zone, inflows from the northern area, recently developed to a residential district showed low $NO_3-N$ and high $HCO_3$, Ca, $SO_4$, and $SiO_2$ indicating the effects of groundwater and concrete. One inflow (T-8), with extremely high Na and Cl, median $SiO_2$, was assessed to have anthropogenic influence, however its contribution to main stream was under 1 %. Road construction near Y-13 also affected water chemistry leading to the highest Na and Cl concentration. These hydro chemical changes can be critically used to evaluate the changes in water budget and fate of chemicals in a peri-urban watershed occasioned by human activities on the Yangjae.

OGLE-2017-BLG-1049: ANOTHER GIANT PLANET MICROLENSING EVENT

  • Kim, Yun Hak;Chung, Sun-Ju;Udalski, A.;Bond, Ian A.;Jung, Youn Kil;Gould, Andrew;Albrow, Michael D.;Han, Cheongho;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyoun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.161-168
    • /
    • 2020
  • We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet-host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36-0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62-2.87 MJup, at a distance of DL = 5.67+1.11-1.52 kpc. The projected star-planet separation is a⊥ = 3.92+1.10-1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.

The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA

  • Park, Bi-Oh;Kim, Seong Heon;Kim, Jong Hwan;Kim, Seon-Young;Park, Byoung Chul;Han, Sang-Bae;Park, Sung Goo;Kim, Jeong-Hoon;Kim, Sunhong
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.458-467
    • /
    • 2021
  • GPR43 (also known as FFAR2 or FFA2) is a G-protein-coupled receptor primarily expressed in immune cells, enteroendocrine cells and adipocytes that recognizes short-chain fatty acids, such as acetate, propionate, and butyrate, likely to be implicated in innate immunity and host energy homeostasis. Activated GPR43 suppresses the cAMP level and induces Ca2+ flux via coupling to Gαi and Gαq families, respectively. Additionally, GPR43 is reported to facilitate phosphorylation of ERK through G-protein-dependent pathways and interacts with β-arrestin 2 to inhibit NF-κB signaling. However, other G-protein-dependent and independent signaling pathways involving GPR43 remain to be established. Here, we have demonstrated that GPR43 augments Rho GTPase signaling. Acetate and a synthetic agonist effectively activated RhoA and stabilized YAP/TAZ transcriptional coactivators through interactions of GPR43 with Gαq/11 and Gα12/13. Acetate-induced nuclear accumulation of YAP was blocked by a GPR43-specific inverse agonist. The target genes induced by YAP/TAZ were further regulated by GPR43. Moreover, in THP-1-derived M1-like macrophage cells, the Rho-YAP/TAZ pathway was activated by acetate and a synthetic agonist. Our collective findings suggest that GPR43 acts as a mediator of the Rho-YAP/TAZ pathway.

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

A MEIS Study on Ge Eppitaxial Growth on Si(001) with dynamically supplied Atomic Hydrogen

  • Ha, Yong-Ho;Kahng, Se-Jong;Kim, Se-Hun;Kuk, Young;Kim, Hyung-Kyung;Moon, Dae-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.156-157
    • /
    • 1998
  • It is a diffcult and challenging pproblem to control the growth of eppitaxial films. Heteroeppitaxy is esppecially idfficult because of the lattice mismatch between sub-strate and depposited layers. This mismatch leads usually to a three dimensional(3D) island growth. But the use of surfactants such as As, Sb, and Bi can be beneficial in obtaining high quality heteroeppitaxial films. In this study medium energy ion scattering sppectroscoppy(MEIS) was used in order to reveal the growth mode of Ge on Si(001) and the strain of depposited film without and with dynamically supplied atomic hydrogen at the growth thempperature of 35$0^{\circ}C$. It was ppossible to control the growth mode from layer-by-layer followed by 3D island to layer-by-layer by controlling the hydrogen flux. In the absent of hydro-gen the film grows in the layer-by-layer mode within the critical thickness(about 3ML) and the 3D island formation is followed(Fig1). The 3D island formation is suppressed by introducing hydrogen resulting in layer-by-layer growth beyond the critical thickness(Fig2) We measured angular shift of blocking dipp in order to obtain the structural information on the thin films. In the ppressence of atomic hydrogen the blocking 야 is shifted toward higher scattering angle about 1。. That means the film is distorted tetragonally and strained therefore(Fig4) In other case the shift of blocking dipp at 3ML is almost same as pprevious case. But above the critical thickness the pposition of blocking dipp is similar to that of Si bulk(Fig3). It means the films is relaxed from the first layer. There is 4.2% lattice mismatch between Ge and Si. That mismatch results in about 2。 shift of blocking dipp. We measured about 1。 shift. This fact could be due to the intermixing of Ge and Si. This expperimental results are consistent with Vegard's law which says that the lattice constant of alloys is linear combination of the lattic constants of the ppure materials.

  • PDF

연속시간 마코프 프로세스를 이용한 지하매질에서의 통계적 핵종이동 모델 (A Stochastic Model for the Nuclide Migration in Geologic Media Using a Continuous Time Markov Process)

  • 이연명;강철형;한필수;박헌휘;이건재
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.154-165
    • /
    • 1993
  • 연속시간 마코프프로세스를 이용한 한 통계적 방법에 의한 일차원 지하 핵종이동 모델이 제시되었다. 지하매질은 보편적으로 지하수속도, 분산계수 또는 지연계수 등 물리화학적 변수 등의 비균질성을 보여 일반적인 결정론적 이류분산모델로는 잘 기술되지 않는다. 통계적 모델에서의 최종결과는 시간에 따른 함수로서의 기대값과 그 기대값의 분산도를 보여주는 분산치다. 매질이 균질하다고 생각될 정도로 나뉘어진 구획에 대한 핵종의 농도 분포를 구하여 결정론적인 해석해에 의한 농도분포와 비교하여 비균질 매질, 또는 현저하게 구분되는 다층매질의 경우에 대해서 유용 할 것이라는 결론을 얻었다. 매질을 나눈 구획수가 수치적 분산에 민감한 것으로 나타났지만 해석적 모델에 의해 분산계수가 보정될 수 있었다.

  • PDF

Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters

  • Yi, Kangwoo;Moon, Yong-Jae;Lim, Daye;Park, Eunsu;Lee, Harim
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts "Yes" or "No" for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.

  • PDF

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석 (Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps)

  • 이재수;남상운;김용현
    • 생물환경조절학회지
    • /
    • 제22권4호
    • /
    • pp.400-407
    • /
    • 2013
  • 본 연구는 식물공장용으로 방전램프로서 메탈할라이드램프(MH), 고압나트륨램프(HPS), 제논램프(XE)를 사용하고, 냉백색형광등(FL)을 대조구로 사용한 가운데 상추(Lactuca sativa L. cv. Jeokchima)의 생육 및 파이토케미컬의 특성을 분석하고자 수행되었다. 식물공장 내부의 환경조건은 광주기 16/8h, 광합성유효광양자속(photosynthetic photon flux, PPF) $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 기온 $22/18^{\circ}C$, 습도 70%, $CO_2$ 농도 $400{\mu}mol{\cdot}mol^{-1}$로 조절하였다. 각 램프의 분광 특성을 이용하여 PPF에 대한 청색광 영역(400~500nm), 녹색광 영역(500~600nm), 적색광 영역(600~700nm)의 비율을 계산하였다. MH램프의 청색광 영역은 23.0%로서 다른 처리구에 비해서 가장 높게 나타났다. 한편 HPS램프의 청색광 영역은 4.7%로서 가장 낮게 나타났으나, 적색광 영역은 38.0%로서 다른 처리구에 비해서 높게 나타났다. 정식 후 11일째와 21일째에 측정된 상추의 엽장, 엽폭, 엽면적, 지상부 생체중 및 건물중은 방전램프의 광질에 따른 유의차가 나타날 정도로 다르게 나타났다. HPS 처리구의 엽면적은 $143,486mm^2$로서 대조구의 $98,474mm^2$에 비해서 45.7% 크게 나타났으며, MH와 XE 처리구는 대조구에 비해서 각각 16.3%, 9.5%로 크게 나타났다. 이러한 결과는 지상부 생체중에서도 유사하게 나타났다. 적색광 영역의 비율이 높은 HPS 처리구에서는 상추의 잎 관련 생장 특성에서 최대치가 나타났으나, 청색광 영역의 비율이 높은 MH와 XE 처리구에서는 낮게 나타났다. 방전등 처리구에 따라 상추 잎에 축적된 아스코르빈산 함량은 대조구에 비해서 작게 나타났으며, 처리구 사이에 유의차가 인정되지 않았다. 상추 잎의 안토시아닌 함량은 MH 처리구에서 0.70mg/100g으로 최대치가 나타났으며, XE와 HPS 처리구는 대조구의 0.58mg/100g에 비해서 각각 79.3%, 8.6%수준이었다. 결과적으로 방전램프의 종류에 따라 상추의 생장 특성, 아스코르빈산 및 안토시아닌 함량이 다르게 나타났다. 따라서 식물공장용 인공광원으로서 방전램프를 효율적으로 활용하면서, 상추의 생장 및 파이토케미컬 함량을 증진시키기 위해서는 분광 특성이 상이한 방전램프의 병용 또는 단색광 LED의 추가 설치 등과 같은 방전램프의 광질 개선이 요구된다.

Na-A형 제올라이트의 합성 및 중금속에 대한 흡착능 (Synthesis of Na-A Type Zeolite and Its Ability to Adsorb Heavy Metals)

  • 채수천;장영남;배인국;이성기;류경원
    • 한국광물학회지
    • /
    • 제21권1호
    • /
    • pp.37-44
    • /
    • 2008
  • 본 연구는 마포소각장에서 발생된 용융슬래그로부터 Na-A형 제올라이트를 합성하여 환경 저감재로 재활용키 위한 목적에서 수행되었다. 초기물질로 사용된 용융슬래그는 용제(flux)로 사용된 Fe 성분(19.6% of $Fe_2O_3$, and 18.9% of FeO)이 비교적 높기는 하지만, 상대적으로 제올라이트의 주요 성분인 $SiO_2$, $Al_2O_3$$Na_2O$가 각각 26.6%, 10.9% 및 2.7% 함유되어 제올라이트의 합성에 유리한 조성을 가지고 있다. 제올라이트의 수열합성은 $80^{\circ}C$에서 수행되었으며, $SiO_2/Al_2O_3\;=\;0.80{\sim}1.96$인 넓은 범위의 화학조성에서 Na-A형 제올라이트가 합성되는 것을 확인하였다. 제올라이트의 양이온 교환 능력은 10 h 이상의 합성시간에서 일정하게 거의 220 cmol/kg인 것으로 측정되었다. 합성된 제올라이트의 중금속 (As, Cr, Cd, Cu, Mn 및 Pb)에 대한 흡착능을 측정한 결과, As 및 Cr을 제외한 모든 중금속에서 높은 흡착율을 보였다. As와 Cr은 Eh-pH분석을 통해 각각 $HAsO_4^{2-}$$CrO_4^{2-}$인 이온상으로 존재하고 있음을 확인하였다. As와 Cr에 대한 제올라이트의 흡착률이 낮은 것은 이들 이온상들의 크기가 Na-A형 제올라이트의 pore size ($4\;{\AA}$)보다 상대적으로 큰 유효 이온반경($4\;{\AA}$, 직경 $8\;{\AA}$)을 가지고 있기 때문인 것으로 결론지었다.