DOI QR코드

DOI QR Code

OGLE-2017-BLG-1049: ANOTHER GIANT PLANET MICROLENSING EVENT

  • Kim, Yun Hak (Korea Astronomy and Space Science Institute) ;
  • Chung, Sun-Ju (Korea Astronomy and Space Science Institute) ;
  • Udalski, A. (Warsaw University Observatory) ;
  • Bond, Ian A. (Institute of Natural and Mathematical Science, Massey University) ;
  • Jung, Youn Kil (Korea Astronomy and Space Science Institute) ;
  • Gould, Andrew (Korea Astronomy and Space Science Institute) ;
  • Albrow, Michael D. (Department of Physics and Astronomy, University of Canterbury) ;
  • Han, Cheongho (Department of Physics, Chungbuk National University) ;
  • Hwang, Kyu-Ha (Korea Astronomy and Space Science Institute) ;
  • Ryu, Yoon-Hyun (Korea Astronomy and Space Science Institute) ;
  • Shin, In-Gu (Korea Astronomy and Space Science Institute) ;
  • Shvartzvald, Yossi (Department of Particle Physics and Astrophysics, Weizmann Institute of Science) ;
  • Yee, Jennifer C. (Center for Astrophysics - Harvard & Smithsonian) ;
  • Zang, Weicheng (Department of Astronomy and Tsinghua Centre for Astrophysics, Tsinghua University) ;
  • Cha, Sang-Mok (Korea Astronomy and Space Science Institute) ;
  • Kim, Dong-Jin (Korea Astronomy and Space Science Institute) ;
  • Kim, Hyoun-Woo (Korea Astronomy and Space Science Institute) ;
  • Kim, Seung-Lee (Korea Astronomy and Space Science Institute) ;
  • Lee, Chung-Uk (Korea Astronomy and Space Science Institute) ;
  • Lee, Dong-Joo (Korea Astronomy and Space Science Institute)
  • Received : 2020.09.01
  • Accepted : 2020.12.01
  • Published : 2020.12.31

Abstract

We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet-host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36-0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62-2.87 MJup, at a distance of DL = 5.67+1.11-1.52 kpc. The projected star-planet separation is a⊥ = 3.92+1.10-1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.

Keywords

Acknowledgement

Work by Y. H. Kim was supported by the Korea Astronomy and Space Science Institute (KASI) grant 2020-1-830-08. This research has made use of the KMTNet system operated by KASI and the data were obtained at the three host sites CTIO in Chile, SAAO in South Africa, and SSO in Australia. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to AU. The MOA project was supported by JSPS KAKENHI grant No. JSPS24253004, JSPS26247023, JSPS23340064, JSPS15H00781, JP17H02871, and JP16H06287. This work has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Work by CH was supported by the National Research Foundation of Korea (grants 2017R1A4A1015178 and 2019R1A2C2085965).

References

  1. Albrow, M. D., Horne, K., Bramich, D. M., et al. 2009, MN-RAS, Difference Imaging Photometry of Blended Gravitational Microlensing Events with a Numerical Kernel, 397, 2099 https://doi.org/10.1111/j.1365-2966.2009.15098.x
  2. Alard, C., & Lupton, R. H. 1998, A Method for Optimal Image Subtraction, ApJ, 503, 325 https://doi.org/10.1086/305984
  3. Batista, V., Gould, A., Dieters, S., et al. 2011, MOA-2009-BLG-387Lb: A Massive Planet Orbiting an M Dwarf, A&A, 529, 102
  4. Battacharya, A., Bennett, D. P., Anderson, J., et al. 2017, The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star, AJ, 154, 59 https://doi.org/10.3847/1538-3881/aa7b80
  5. Bennett, D. P., Bond, I. A., Udalski, A., et al. 2008, A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192, ApJ, 684, 663 https://doi.org/10.1086/589940
  6. Bennett, D. P., Batista, V., Bond, I. A., et al. 2014, MOA-2011-BLG-262Lb: A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge, ApJ, 758, 155 https://doi.org/10.1088/0004-637X/785/2/155
  7. Bennett, D. P., Bhattacharya, A., Beaulieu, J. -P., et al. 2019, Keck Observations Confirm a Super-Jupiter Planet Orbiting M Dwarf OGLE-2005-BLG-071L, AJ, 159, 68
  8. Bessell, M. S., & Brett, J. M. 1988, JHKLM Photometry: Standard Systems, Passbands, and Intrinsic Colors, PASP, 100, 1134 https://doi.org/10.1086/132281
  9. Bond, I. A., et al. 2001, Real-Time Difference Imaging Analysis of MOA Galactic Bulge Observations During 2000, MNRAS, 327, 868 https://doi.org/10.1046/j.1365-8711.2001.04776.x
  10. Boss, A. P., 2006, Rapid Formation of Gas Giant Planets around M Dwarf Stars, ApJ, 643, 501 https://doi.org/10.1086/501522
  11. Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001, The Theory of Brown Dwarfs and Extrasolar Giant Planets, RvMP, 73, 719
  12. Chung, S.-J., Han, C., Park, B.-G., et al. 2005, Properties of Central Caustics in Planetary Microlensing, ApJ, 630, 535 https://doi.org/10.1086/432048
  13. Dominik, M. 1998, Galactic Microlensing with Rotating Binaries, A&A, 329, 361
  14. Dong, S., Gould, A., Udalski, A., et al. 2009, OGLE-2005-BLG-071Lb, The Most Massive M Dwarf Planetary Companion?, ApJ, 695, 970 https://doi.org/10.1088/0004-637X/695/2/970
  15. Erdl, H., & Schneider, P. 1993, Classification of the Multiple Deflection Two Point-Mass Gravitational Lens Models and Application of Catastrophe Theory in Lensing, A&A, 268, 453
  16. Gaudi, B. S. 2012, Microlensing Surveys for Exoplanets, ARA&A, 50, 411 https://doi.org/10.1146/annurev-astro-081811-125518
  17. Gould, A. 1992, Extending the MACHO Search to Approximately 106M, ApJ, 392, 442 https://doi.org/10.1086/171443
  18. Gould, A. 1994, Proper Motions of MACHOs, ApJL, 421, 71
  19. Gould, A., Miralda-Escude, J., Bahcall, & J. N. 1994, Microlensing Events: Thin Disk, Thick Disk, or Halo?, ApJ, 423, L105 https://doi.org/10.1086/187247
  20. Gould, A. 2000, A Natural Formalism for Microlensing, ApJ, 542, 785 https://doi.org/10.1086/317037
  21. Gould, A. 2001, Theory of Microlensing, ASPC, 239, 3
  22. Gould, A., Udalski, A., An, D., et al. 2006, Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common, ApJ, 644, 37
  23. Han, C. 2005, Analysis of Microlensing Light Curves Induced by Multiple-Planet Systems, ApJ, 629, 1102 https://doi.org/10.1086/431143
  24. Han, C., Jung, Y. K., Udalski, A., et al. 2016, OGLE-2014-BLG-0257L: A Microlensing Brown Dwarf Orbiting a Lowmass M Dwarf, ApJ, 822, 75 https://doi.org/10.3847/0004-637X/822/2/75
  25. Holtzman, J. A., Watson, A. M., Baum, W. A., et al. 1998, The Luminosity Function and Initial Mass Function in the Galactic Bulge, AJ, 115, 1946 https://doi.org/10.1086/300336
  26. Ida, S., & Lin, D. N. C. 2004, Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities, ApJ, 616, 567 https://doi.org/10.1086/424830
  27. Jung, Y. K., Udalski, A., Gould, A., et al. 2018, OGLE-2017-BLG-1522: A Giant Planet around a Brown Dwarf Located in the Galactic Bulge, AJ, 155, 219 https://doi.org/10.3847/1538-3881/aabb51
  28. Kennedy, G. M., Kenyon, S. J., Bromley, B. C., et al. 2006, Planet Formation around Low-Mass Stars: The Moving Snow Line and Super-Earths, ApJ, 650, 139
  29. Kennedy, G. M., & Kenyon, S. J. 2008, Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets, ApJ, 673, 502 https://doi.org/10.1086/524130
  30. Kervella, P., Thevenin, F., Di Folco, E., & Segransan, D. 2004, The Angular Sizes of Dwarf Stars and Subgiants. Surface Brightness Relations Calibrated by Interferometry, A&A, 426, 297 https://doi.org/10.1051/0004-6361:20035930
  31. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  32. Kim, D.-J., Kim, H.-W., Hwang, K.-H., et al. 2018, Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry, AJ, 155, 76 https://doi.org/10.3847/1538-3881/aaa47b
  33. Laughlin, G., Bodenheimer, P., & Adams, F. C. 2004, The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs, ApJL, 612, 73
  34. Montet, B. T., Crepp, J. R., Johnson, J. A., et al. 2014, The TRENDS High-contrast Imaging Survey. IV. The Occurrence Rate of Giant Planets around M Dwarfs, ApJ, 781, 28 https://doi.org/10.1088/0004-637X/781/1/28
  35. Nataf, D. M., Gould, A., Fouque, P., et al. 2013, Reddening and Extinction toward the Galactic Bulge from OGLE-III: The Inner Milky Way's RV - 2.5 Extinction Curve, ApJ, 769, 88 https://doi.org/10.1088/0004-637X/769/2/88
  36. Skowron, J., Udalski, A., Kozlowski, S., et al. 2016, Analysis of Photometric Uncertainties in the OGLE-IV Galactic Bulge Microlensing Survey Data, AcA, 66, 1
  37. Skowron, J., Udalski, A., Gould, A., et al. 2011, Binary Microlensing Event OGLE-2009-BLG-020 Gives Verifiable Mass, Distance, and Orbit Predictions, ApJ, 738, 87 https://doi.org/10.1088/0004-637X/738/1/87
  38. Sumi, T., Bennett, D. P., Bond, I. A., et al. 2010, A Cold Neptune-Mass Planet OGLE-2007-BLG-368Lb: Cold Neptunes Are Common, ApJ, 710, 1641 https://doi.org/10.1088/0004-637X/710/2/1641
  39. Sumi, T., Udalski, A., Bennett, D. P., et al. 2016, The First Neptune Analog or Super-Earth with a Neptune-like Orbit: MOA-2013-BLG-605Lb, ApJ, 825, 112 https://doi.org/10.3847/0004-637X/825/2/112
  40. Udalski, A. 2003, The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey, AcA, 53, 291
  41. Udalski, A., Ryu, Y.-H., Sajadian, S., et al. 2018, OGLE-2017-BLG-1434Lb: Eighth q < 1 × 10-4 Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function, AcA, 68, 1
  42. Vandorou, A., Bennett, D. P., Beaulieu, J.-P., et al. 2020, Revisiting MOA 2013-BLG-220L: A Solar-type Star with a Cold Super-Jupiter Companion, AJ, 160, 121 https://doi.org/10.3847/1538-3881/aba2d3
  43. Yee, J. C., Shvartzvald, Y., Gal-Yam, A., et al. 2012, MOA-2011-BLG-293Lb: A Test of Pure Survey Microlensing Planet Detections, ApJ, 755, 102 https://doi.org/10.1088/0004-637X/755/2/102
  44. Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens, ApJ, 603, 139 https://doi.org/10.1086/381241