• 제목/요약/키워드: C-domain

검색결과 2,113건 처리시간 0.028초

DOMAINS WITH Ck CR CONTRACTIONS

  • Kim, Sung-Yeon
    • 충청수학회지
    • /
    • 제23권1호
    • /
    • pp.11-27
    • /
    • 2010
  • Let $\Omega$ be a domain with smooth boundary in ${\mathbb{C}}^{n+1}$ and let $p{\in}{\partial}{\Omega}$. Suppose that $\Omega$ is Kobayashi hyperbolic and p is of Catlin multi-type ${\tau}=({\tau}_0,{\ldots},{\tau}_n)$. In this paper, we show that $\Omega$ admits a $C^{k}$ contraction at p with $k{\geq}\mid{\tau}\mid+1$ if and only if $\Omega$ is biholomorphically equivalent to a domain defined by a weighted homogeneous polynomial.

ON v-MAROT MORI RINGS AND C-RINGS

  • Geroldinger, Alfred;Ramacher, Sebastian;Reinhart, Andreas
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.1-21
    • /
    • 2015
  • C-domains are defined via class semigroups, and every C-domain is a Mori domain with nonzero conductor whose complete integral closure is a Krull domain with finite class group. In order to extend the concept of C-domains to rings with zero divisors, we study v-Marot rings as generalizations of ordinary Marot rings and investigate their theory of regular divisorial ideals. Based on this we establish a generalization of a result well-known for integral domains. Let R be a v-Marot Mori ring, $\hat{R}$ its complete integral closure, and suppose that the conductor f = (R : $\hat{R}$) is regular. If the residue class ring R/f and the class group C($\hat{R}$) are both finite, then R is a C-ring. Moreover, we study both v-Marot rings and C-rings under various ring extensions.

효모시스템에서 Human Transglutaminase C(TGase II)의 발현에 관한 연구 : C-말단부위의 결손효과

  • 우상규;정선미;이상기;안병윤;김희철
    • 한국미생물·생명공학회지
    • /
    • 제24권3호
    • /
    • pp.290-298
    • /
    • 1996
  • In an effort to understand the role of the conserved domain and of the heterologous one-third part of the carboxy terminal domain of transglutaminase C (TGase II), attempts were made to express TGase II cDNA of human origin in yeast Saccharomyces cerevisiae as in a full-length form as well as in a form of C-terminal truncation. The 2$\mu$-based expression plasmids which contained the TGase II cDNA under the gal inducible promoter were introduced into yeast and the maintenance of the full-length and truncated form of the TGase II gene plasmids were confirmed by Southern blot. The expression of the TGase II gene was analysed by reverse transcription polymerase chain reaction (RT-PCR), and western blot analyses. As assayed by [1,4$^{14}$C]-putrescine incorporation into succinylated casein, the full-lenth as well as the truncated forms of recombinant TGase II showed some catalytic activity. These results indicate that the N-terminal homologous domain of human TGase II retains a catalytically active domain. The level of TGase II expressed in yeast, however, was far lower than satisfactory and other expression system should be sought further chracterization of the enzyme. The negative effect of TGase II on the growth of yeast is interesting with respect to the physiological effect of TGase II in cornification of epidermal keratinocytes.

  • PDF

Evidence of complex formation between FADD and c-FLIP death effector domains for the death inducing signaling complex

  • Hwang, Eun Young;Jeong, Mi Suk;Park, So Young;Jang, Se Bok
    • BMB Reports
    • /
    • 제47권9호
    • /
    • pp.488-493
    • /
    • 2014
  • Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED.

멍게(Halocynthia roretzi) 비타민 D 수용체 상동체 동정 및 전사활성 (Characterization and Transcriptional Activity of a Vitamin D Receptor Ortholog in the Ascidian Halocynthia roretzi)

  • 이정환;손영창
    • 한국수산과학회지
    • /
    • 제48권6호
    • /
    • pp.913-919
    • /
    • 2015
  • In vertebrates, the vitamin D receptor (VDR), a member of the nuclear receptor superfamily, binds the biologically active ligand $1{\alpha},25-(OH)_2$-vitamin $D_3$ (1,25 $D_3$). Nearly all vertebrates, including Agnatha, possess a VDR with high ligand selectivity for 1,25 $D_3$ and related metabolites. Although a putative ancestral VDR gene is present in the genome of the chordate invertebrate Ciona intestinalis, the functional characteristics of marine invertebrate VDR are still obscure. To elucidate the ascidian Halocynthia roretzi VDR (HrVDR), we cloned full-length HrVDR cDNA and investigated the transcriptional activity of HrVDR in HEK293 cells. HrVDR consists of 1,680 nucleotides (559 amino acids [aa]), including a short N-terminal region (A/B domain; 26 aa), DNA-binding domain (C domain; 72 aa), hinge region (D domain; 272 aa), and C-terminal ligand-binding domain (E domain; 161 aa). The amino acid sequence identity of HrVDR was greatest to that of C. intestinalis VDR (56%). In the luciferase reporter assays, the transcriptional activity of HrVDR was not significantly increased by 1,25 $D_3$, whereas the farnesoid X receptor agonist GW4064 increased the transactivation of HrVDR. These results suggest the presence of a novel ligand for and a distinct ligand-binding domain in ascidian VDR.

Structural assessment of the tetramerization domain and DNA-binding domain of CP2c

  • Jo, Ku-Sung;Ryu, Ki-Sung;Yu, Hee-Wan;Lee, Seu-Na;Kim, Ji-Hun;Kim, Eun-Hee;Wang, Chae-Yeon;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • 한국자기공명학회논문지
    • /
    • 제22권4호
    • /
    • pp.119-124
    • /
    • 2018
  • Although the transcription factor CP2c has been recently validated as a promising target for development of novel anticancer therapy, its structure has not been solved yet. In the present study, the purified recombinant protein corresponding to the tetramerization domain of CP2c appeared to be well folded, whereas the Elf-1 domain showed a largely unfolded conformation. Particularly, the Elf-1 domain, which contains the putative DNA-binding region, showed a conformational equilibrium between relatively less-ordered and well-ordered conformers. Interestingly, addition of zinc shifted the equilibrium to the relatively more structured conformer, whereas zinc binding decreased the overall stability of the protein, leading to a promoted precipitation. Likewise, a dodecapeptide that has been suggested to bind to the Elf-1 domain also appeared to shift the conformational equilibrium and to destabilize the protein. These results constitute the first structural characterization of the CP2c domains and newly suggest that zinc ion might be involved in the conformational regulation of the protein.

High Level of Soluble Expression in Escherichia coli and Characterisation of the Cloned Bacillus thuringiensis Cry4Ba Domain III Fragment

  • Chayaratanasin, Poramed;Moonsom, Seangdeun;Sakdee, Somsri;Chaisri, Urai;Katzenmeier, Gerd;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.58-64
    • /
    • 2007
  • Similar to the other known structures of Bacillus thuringiensis Cry $\delta$-endotoxins, the crystal structure of the 65-kDa activated Cry4Ba toxin comprises three domains which are, from the N- to C-terminus, a bundle of $\alpha$-helices, a three-$\beta$-sheet domain, and a $\beta$-sandwich. To investigate the properties of the C-terminal domain III in isolation from the rest of the toxin, the cloned Cry4Ba-domain III was over-expressed as a 21-kDa soluble protein in Escherichia coli, which cross-reacted with anti-Cry4Ba domain III monoclonal antibody. A highly-purified domain III was obtained in a monomeric form by ion-exchange and size-exclusion FPLC. Circular dichroism spectroscopy indicated that the isolated domain III fragment distinctly exists as a $\beta$-sheet structure, corresponding to the domain III structure embodied in the Cry4Ba crystal structure. In vitro binding analysis via immuno-histochemical assay revealed that the Cry4Ba-domain III protein was able to bind to the apical microvilli of the susceptible Stegomyia aegypti larval midguts, albeit at lower-binding activity when compared with the full-length active toxin. These results demonstrate for the first time that the C-terminal domain III of the Cry4Ba mosquito-larvicidal protein, which can be isolated as a native folded monomer, conceivably participates in toxin-receptor recognition.

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

마늘유래 Cytochrome P450 유전자의 변이 분석 (Genetic Variation of Cytochrome P450 Genes in Garlic Cultivars)

  • 권순태
    • 한국자원식물학회지
    • /
    • 제24권5호
    • /
    • pp.584-590
    • /
    • 2011
  • 의성종 마늘의 유묘로부터 상처(wound)에 특이적으로 발현되는 cytochrome P450 유전자군의 하나인 P450-Esg cDNA를 탐색하였다. P450-Esg는 1,419 bp의 open reading frame(ORF)을 가지고 473개의 아미노산을 가진 polypeptide를 코딩하는 것으로 나타났다. 국내와 몽골로부터 수집한 12개의 재배종으로 부터 P450-Esg 유사 유전자의 염기서열을 비교한 결과 시작코돈(ATG)에서 472~510 bp 및 1,210~1,240 bp 부위의 염기에서 재배종간에 차이를 보이는 염기서열을 다수 확인하였다. cDNA 1,210~1,240 bp의 부위는 P450 유전자에서 공통적으로 알려진 heme binding domain으로, 각 지역에서 수집된 재배종은 염기서열뿐만 아니라 아미노산 서열에 있어서도 특이적인 변이를 보였다. cDNA 472~510 bp 부위에서 코딩하는 13개 아미노산의 서열은 12개 재배종에서 모두 동일하였으나, 13개 아미노산 중 7개에서 재배종 마다 각각 다른 DNA 염기로 코딩하는 단일 염기다형성(single nucleotide polymorphism)을 보이는 서열을 확인하였다. 이 결과는 다양하게 존재하는 국내외 마늘 재배종을 구분하는 marker로 사용될 것이며, 외국산 마늘에 대한 유전적 우선권을 확보하는 수단으로 사용될 것이다.

Mainchain NMR Assignments and secondary structure prediction of the C-terminal domain of BldD, a developmental transcriptional regulator from Streptomyces coelicolor A3(2)

  • Kim, Jeong-Mok;Won, Hyung-Sik;Kang, Sa-Ouk
    • 한국자기공명학회논문지
    • /
    • 제17권1호
    • /
    • pp.59-66
    • /
    • 2013
  • BldD, a developmental transcription factor from Streptomyces coelicolor, is a homodimeric, DNA-binding protein with 167 amino acids in each subunit. Each monomer consists of two structurally distinct domains, the N-terminal domain (BldD-NTD) responsible for DNA-binding and dimerization and the C-terminal domain (BldD-CTD). In contrast to the BldD-NTD, of which crystal structure has been solved, the BldD-CTD has been characterized neither in structure nor in function. Thus, in terms of structural genomics, structural study of the BldD-CTD has been conducted in solution, and in the present work, mainchain NMR assignments of the recombinant BldD-CTD (residues 80-167 of BldD) could be achieved by a series of heteronuclear multidimensional NMR experiments on a [$^{13}C/^{15}N$]-enriched protein sample. Finally, the secondary structure prediction by CSI and TALOS+ analysis using the assigned chemical shifts data identified a ${\beta}-{\alpha}-{\alpha}-{\beta}-{\alpha}-{\alpha}-{\alpha}$ topology of the domain. The results will provide the most fundamental data for more detailed approach to the atomic structure of the BldD-CTD, which would be essential for entire understanding of the molecular function of BldD.