DOMAINS WITH Ck CR CONTRACTIONS

  • Kim, Sung-Yeon (Department of Mathematics Education Kangwon National University)
  • Received : 2009.08.31
  • Accepted : 2010.01.18
  • Published : 2010.03.30

Abstract

Let $\Omega$ be a domain with smooth boundary in ${\mathbb{C}}^{n+1}$ and let $p{\in}{\partial}{\Omega}$. Suppose that $\Omega$ is Kobayashi hyperbolic and p is of Catlin multi-type ${\tau}=({\tau}_0,{\ldots},{\tau}_n)$. In this paper, we show that $\Omega$ admits a $C^{k}$ contraction at p with $k{\geq}\mid{\tau}\mid+1$ if and only if $\Omega$ is biholomorphically equivalent to a domain defined by a weighted homogeneous polynomial.

Keywords

References

  1. M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, Real Submanifolds in Complex Space and Their mappings, Princeton Math. Series 47, Princeton Univ. Press, New Jersey, 1999.
  2. M. S. Baouendi, L. P. Rothschild and F. Treves CR structures with group action and extendability of CR functions, Invent. Math. 82 (1985), no. 2, 359-396. https://doi.org/10.1007/BF01388808
  3. F. Berteloot, Methodes de changement d'echelles en analyse complexe, A draft for lectures at C.I.R.M. (Luminy, France) in 2003.
  4. D. W. Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529-586. https://doi.org/10.2307/1971087
  5. J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615-637. https://doi.org/10.2307/2007015
  6. K. T. Kim and S. Y. Kim, CR hypersurfaces with a contracting automorphism, J. Geom. Anal. 18 (2008), no. 3, 800-834. https://doi.org/10.1007/s12220-008-9033-z
  7. K. T. Kim and J. C. Yoccoz, Real hypersurface with a holomorphic contraction, preprint.
  8. S. Kobayashi, Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318. Springer-Verlag, Berlin, 1998.
  9. S. G. Krantz, Function theory of several complex variables, AMS Chelsea, Amer. Math. Soc. 1992.
  10. J. P. Rosay, Sur une caracterisation de la boule parmi les domaines de $C^n$ par son groupe d'automorphismes. Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91-97. https://doi.org/10.5802/aif.768
  11. N. Tanaka, On the pseudoconformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14 (1962), 397-429. https://doi.org/10.2969/jmsj/01440397
  12. T. Ueda, Normal forms of attracting holomorphic maps, Math. J. of Toyama Univ. 22 (1999), 25-34.
  13. B. Wong, Characterization of the unit ball in $C^n$ by its automorphism group. Invent. Math. 41 (1977), no. 3, 253-257. https://doi.org/10.1007/BF01403050