References
- M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, Real Submanifolds in Complex Space and Their mappings, Princeton Math. Series 47, Princeton Univ. Press, New Jersey, 1999.
- M. S. Baouendi, L. P. Rothschild and F. Treves CR structures with group action and extendability of CR functions, Invent. Math. 82 (1985), no. 2, 359-396. https://doi.org/10.1007/BF01388808
- F. Berteloot, Methodes de changement d'echelles en analyse complexe, A draft for lectures at C.I.R.M. (Luminy, France) in 2003.
- D. W. Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529-586. https://doi.org/10.2307/1971087
- J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615-637. https://doi.org/10.2307/2007015
- K. T. Kim and S. Y. Kim, CR hypersurfaces with a contracting automorphism, J. Geom. Anal. 18 (2008), no. 3, 800-834. https://doi.org/10.1007/s12220-008-9033-z
- K. T. Kim and J. C. Yoccoz, Real hypersurface with a holomorphic contraction, preprint.
- S. Kobayashi, Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318. Springer-Verlag, Berlin, 1998.
- S. G. Krantz, Function theory of several complex variables, AMS Chelsea, Amer. Math. Soc. 1992.
-
J. P. Rosay, Sur une caracterisation de la boule parmi les domaines de
$C^n$ par son groupe d'automorphismes. Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91-97. https://doi.org/10.5802/aif.768 - N. Tanaka, On the pseudoconformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14 (1962), 397-429. https://doi.org/10.2969/jmsj/01440397
- T. Ueda, Normal forms of attracting holomorphic maps, Math. J. of Toyama Univ. 22 (1999), 25-34.
-
B. Wong, Characterization of the unit ball in
$C^n$ by its automorphism group. Invent. Math. 41 (1977), no. 3, 253-257. https://doi.org/10.1007/BF01403050