• Title/Summary/Keyword: C-Fos

Search Result 475, Processing Time 0.025 seconds

Increase of NADPH-diaphorase Expression in Hypothalamus of Stat4 Knockout Mice

  • Hong, Mee-Sook;Song, Jeong-Yoon;Yun, Dong-Hwan;Cho, Jeong-Je;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.337-341
    • /
    • 2009
  • Signal transducer and activator of transcription 4 (STAT4), a STAT family member, mediates interleukin 12 (IL12) signal transduction. IL12 is known to be related to calorie-restricted status. In the central nervous system, IL12 also enhances the production of nitric oxide (NO), which regulates food intake. In this study, the expression of neuronal NO synthase (Nos1), which is also related to food intake, was investigated in the hypothalamic areas of Stat4 knockout (KO) mice using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, a marker for neurons expressing Nos1 enzyme. Western blots were also performed to evaluate Nos1 and Fos expression. Wild-type Balb/c (WT group, n=10 male) and Stat4 KO mice (Stat4 KO group, n=8 male) were used. The body weight and daily food intake in the WT group were $22.4{\pm}0.3$ and 4.4 g per day, while those in the Stat4 KO group were $18.7{\pm}0.4$ and 1.8 g per day, respectively. Stat4 mice had lower body weight and food intake than Balb/c mice. Optical intensities of NADPH-d-positive neurons in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) of the Stat4 KO group were significantly higher than those of the WT group. Western blotting analysis revealed that the hypothalamic Nos1 and Fos expression of the Stat4 KO group was up-regulated, compared to that in the WT group. These results suggest that Stat4 may be related to the regulation of food intake and expression of Nosl in the hypothalamus.

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

$Ginsenoside-R_{b1}$ Acts as a Weak Phytoestrogen in MCF-7 Human Breast Cancer Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Park, Wan-Kyu;Cho, Jung-Yoon;Jang, Si-Youl;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.58-63
    • /
    • 2003
  • Ginseng has been recommended to alleviate the menopausal symptoms, which indicates that components of ginseng very likely contain estrogenic activity. We have examined the possibility that a component of Panax ginseng, $ginsenoside-R_{b1}$ acts by binding to estrogen receptor. We have investigated the estrogenic activity of $ginsenoside-R_{b1}$ in a transient transfection system using estrogen-responsive luciferase plasmids in MCF-7 cells. $ginsenoside-R_{b1}$ activated the transcription of the estrogen-responsive luciferase reporter gene in MCF-7 breast cancer cells at a concentration of 50 $\mu$M. Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of $ginsenoside-R_{b1}$ is estrogen receptor dependent. Next, we evaluated the ability of $ginsenoside-R_{b1}$ to induce the estrogen-responsive gene c-fos by semi-quantitative RT-PCR assays and Western analyses. $ginsenoside-R_{b1}$ increased c-fos both at mRNA and protein levels. However, $ginsenoside-R_{b1}$ failed to activate the glucocorticoid receptor, the retinoic acid receptor, or the androgen receptor in CV-1 cells transiently transfected with the corresponding steroid hormone receptors and hormone responsive reporter plasmids. These data support our hypothesis that $ginsenoside-R_{b1}$ acts a weak phytoestrogen, presumably by binding and activating the estrogen receptor.

Effect of Drynariae Rhizoma in RANKL-induced Osteoclast Differentiation (골쇄보가 RANKL에 의해 유도되는 파골세포의 분화에 미치는 영향)

  • Kwak, Seong-Cheoul;Moon, Seo-Young;Kwack, Han-Bok;Jeon, Byung-Hun;Min, Oh-Jae;Choi, Min-Kyu;Kim, Jeong-Joong;Jang, Sung-Jo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.506-510
    • /
    • 2012
  • Bone homeostasis is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoporosis, rheumatoid arthritis and periodontal disease are related with up-regulated osteoclast formation and its activity. Gol-Swae-Bo(Drynariae Rhizoma) is widely used on skeletal disease. In this study, we sought to examine the effect of Drynariae Rhizoma in RANKL-induced osteoclast differentiation. The extract of Drynariae Rhizoma inhibited RANKL-induced osteoclast differentiation in a dose dependent manner without cytotoxicity. receptor activator of nuclear factor-${\kappa}B$ ligand(RANKL) mediated $I{\kappa}B$ degradation in bone marrow macrophages(BMMs). However, the extract of Drynariae Rhizoma inhibited RANKL induced $I{\kappa}B$ degradation in BMMs. And mRNA expression of OSCAR, TRAP, c-Fos and NFATc1 was suppressed by the extract of Drynariae Rhizoma. Moreover, the extract of Drynariae Rhizoma inhibited the protein expression of NFATc1 and c-Fos induced by RANKL. After all the analysis, these results suggest that Drynariae Rhizoma may be good candidate of medicine in the treatment of bone-related disease.

Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats

  • Kim, Hye-Jin;Lee, Geun-Woo;Kim, Min-Ji;Yang, Kui-Ye;Kim, Seong-Taek;Bae, Yong-Cheol;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund's adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions.

A Study on Inhibitory Mechanism of Melia Fructus Extract on Osteoclast Differentiation (천연자(川楝子)의 파골세포 분화 억제기전 연구)

  • Yun, Young-Jin;Lee, Jin-Moo;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • Objectives: This study was conducted to evaluate the inhibitory effect of Melia Fructus extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of Melia Fructus extract in BMMs stimulated with M-CSF. TRAP staining, TRAP activity and Real-time PCR were performed to know the inhibitory effect on osteoclast differentiation. Actin ring formation were analysed to observe the effect of Melia Fructus extract. Results: Melia Fructus extract decreased the number of TRAP positive cells and the expression of NFATc1 gene, c-Fos gene, TRAP and OSCAR in BMMs stimulated with RANKL. Melia Fructus extract has no cytotoxicity at the concentration used in this study. Melia Fructus extract restrained the formation of actin ring. Melia Fructus inhibited NF-${\kappa}B$ activity by inducing degradation of p-$IkB{\alpha}$. Conclusions: Melia Fructus has the inhibitory effect of osteocalst differentiation and bone resorption. Further studies are needed to treat osteoporosis by herbal medicine containing Melia Fructus.

Inhibitory Effect of Paeoniae Radix Alba Ethanol Extract on Osteoclast Differentiation and Formation (백작약 에탄올 추출물의 파골세포 분화 및 생성 억제 작용)

  • Park, Bora;Park, Geun Ha;Gu, Dong Ryun;Ko, Wonmin;Kim, Youn-Chul;Lee, Seoung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • Bone destruction is a pathological symptom of some chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis. Inflammation-induced bone loss of these diseases results from increased number and activity of osteoclasts. Paeoniae Radix Alba has been used in korean traditional medicine to treat disease including inflammation, gynecopathy and various pain. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of Paeoniae Radix Alba ethanol extract (PRAE) on receptor activator of nuclear factor-kappa B ligand (RANKL)-mediated osteoclast differentiation and formation. Osteoclast differentiation and formation were measured by tartrate resistant acidic phosphatase (TRAP) staining and TRAP solution assay. The treatment of PRAE on bone marrow derived macrophages (BMMs), which is known as osteoclast precursor cells, inhibited osteoclast differentiation and formation in a dose-dependent manner. In addition, the expression of osteoclast differentiation marker genes was suppressed by PRAE treatment. This inhibitory effect of PRAE resulted from significant repression of c-Fos expression, and subsequent reduction of NFATc1 expression which was previously reported as a master transcription factor for osteoclastogenesis in vitro and in vivo. These results demonstrate that PRAE negatively regulates osteoclast differentiation and formation and suggest that PRAE can be used as a potent preventive or therapeutic candidate for various bone diseases, such as postmenopausal osteoporosis, periodontitis and rheumatoid arthritis.

Osteoclast Differentiation of Polygoni Cuspidati Radix Extracts Effects and Mechanism of Inhibition Studies (호장근(虎杖根)의 파골세포 분화 억제 효과와 기전 연구)

  • Jang, Hee-Jae;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Lee, Kyung-Sub;Jang, Jun-Bok
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Objectives: This study was conducted to evaluate the inhibitory effect of polygoni cuspidati radix (PCR) extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of PCR extract in BMMs stimulated with RANKL. Tartrate resistant acid phosphatase (TRAP) staining, TRAP activity and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. actin ring formation were analysed to observe the effect of PCR extract. Results: PCR decreased the number of TRAP positive cells and TRAP activities in BMMs stimulated with RANKL and M-CSF. PCR restrained the formation of actin ring. PCR down regulated the induction of NFATc1, c-Fos, TRAP and OSCAR by RANKL. PCR inhibited NF-${\kappa}B$ activity by inducing degradation of $I{\kappa}B{\alpha}$. Conclusions: We suggest that PCR Extracts can be an effective therapeutic agent on osteoclast differentiation caused by diseases such as osteoporosis.

Antidepressant Effect of Liver Tonification and Four Gate Acupuncture Treatments and Its Brain Neural Activity (간정격과 사관혈 침 치료의 우울 행동 개선 효과 및 뇌신경 반응성 분석 연구)

  • Eom, Geun-Hyang;Ryu, Jae-Sang;Park, Ji-Yeun
    • Korean Journal of Acupuncture
    • /
    • v.38 no.3
    • /
    • pp.162-174
    • /
    • 2021
  • Objectives : We aimed to identify the antidepressant effect of liver tonification acupuncture treatment (ACU (LT); KI10, LR8, LU8, LR4) and four gate acupuncture treatment (ACU (FG); LI4, LR3) and its brain neural activity in the normal and chronic restraint stress (CRS)-induced mouse model. Methods : Firstly, normal mice were given ACU (LT) or ACU (FG) and the c-Fos expressions in each brain region were analyzed to examine brain neural activity. Secondly, CRS was administered to mice for 4 weeks, then ACU (LT) or ACU (FG) was performed for 2 weeks. The depression-like behavior was evaluated using open field test (OFT) before and after acupuncture treatment. Then, the c-Fos expressions in each brain region were analyzed to examine brain neural activity. Results : In normal mice, ACU (FG) regulated brain neural activities in the hypothalamus, hippocampus, and periaqueductal gray. ACU (LT) changed more brain regions in the prefrontal cortex, insular cortex, striatum, and hippocampus, including those altered by ACU (FG). In CRS-induced model, ACU (LT) alleviated depression-like behavior more than ACU (FG). Also, brain neural activities in the motor cortex area 2 (M2), agranular ventral part and piriform of insular cortex (AIV and Pir), and cornu ammonis (CA) 1 and CA3 of hippocampus were changed by ACU (LT), and those of AIV and CA3 were also changed by ACU (FG). As in normal mice, ACU (LT) resulted in changes in more brain regions, including those altered by ACU (FG) in CRS model. M2, Pir, and CA1 were only changed by ACU (LT) in depression model, suggesting that these brain regions reflect the specific effect of ACU (LT). Conclusions : ACU (LT) relieved depression-like behavior more than ACU (FG), and this acupuncture effect was associated with modulation of brain neural activities in the motor cortex, insular cortex, and hippocampus.

GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats

  • Lee, Jee Youn;Choi, Hae Young;Park, Chan Sol;Pyo, Mi Kyung;Yune, Tae Young;Kim, Go Woon;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.58-67
    • /
    • 2019
  • Background: Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ~30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods: Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results: The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion: These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.