• Title/Summary/Keyword: C-C Bond Length

Search Result 125, Processing Time 0.026 seconds

Design Equations of Compression Splice Strength and Length in Concrete of 100 MPa and Less Compressive Strength (100 MPa 이하 콘크리트의 철근 압축 이음 강도와 이음 길이 설계)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Although a compression splice length does not need to be longer than a tension splice length due to end bearing effect, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including concrete strength effect need to be found for economical design of ultra-high strength concrete. An experimental study has been conducted using column specimens with concrete strength of 80 and 100 MPa with transverse reinforcement. The test results showed that splice strengths improved when the amount of transverse reinforcement increased. However, end bearing strength did not increase when larger amount of transverse reinforcement is provided within the spliced zone. Therefore, the splice strength enhancement was attributed to the improvement of bond. From regression analysis of 94 test results including specimens made with concrete strength of 40 and 60 MPa, a new design equation is proposed for compression lap splice in the concrete compressive strength ranging from 40 to 100 MPa with transverse reinforcement. By using the proposed equation, the incorrect design equations for lap splice lengths in tension and compression can be corrected. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Thermost behavior of Diglycidyl ether of bisphenol A-Methylene dianiline Succinonitrile System (Diglycidy1 ether of bisphenol A-Methylene dianiline-Succinonitrile계의 열경화 거동)

  • Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.95-100
    • /
    • 1993
  • Abstract Fourier transform infrared (FT -IR) instrument was used to st.udy the thermoset behavior of DGEBA/MDA system with succinonit.rile. That was experimented with the samples which were cured from 8$0^{\circ}C$ to 17$0^{\circ}C$ every 3$0^{\circ}C$ for 1 hour and uncured with different SN content. respect.ively. It was known that prImary amine hydrogen reacted wit.h epoxide group, secondary amine hydrogen with epoxide group and hydroxyl with epoxide group. In addition. the reaction of primary amine hydrogen with nitrile gorup of SN and of hydroxyl group with nitrile group of SN came about. These t.wo reactions made chain bond length longer between main chains.

  • PDF

The Crystal and Molecular Structure of N-Acetyl-L-cysteine (N-Acetyl-L-cysteine의 결정 및 분자구조)

  • Young Ja Lee;Il-Hwan Suh
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.193-200
    • /
    • 1980
  • The crystal structure of N-acetyl-L-cysteine, $C_5H_9NO_3S,$ has been determined from three dimensional photographic intensity data $(CuK{\alpha}$ radiation) by single crystal X-ray diffraction analysis. There is one formula unit in the triclinic unit cell with a = 7.04(3), b = 5.14(2), c = 8.25(3) ${\AA}$, ${\alpha}$ = 106(2), ${\beta}$ = 51(1), ${\gamma}$ = 124(2)$^{\circ}$ and space group P$_1$, The structure was solved by the direct method and refined by the full matrix least-squares method. The final R value is 12.3% for 629 observed reflections. The C-carboxyl group and the N-acetyl group are very neary planar. The molecule appears to form with neighboring molecules a hydrogen bond, $O-H{\cdot}{\cdot}{\cdot}O(3)$ of length 2.59${\AA}$.

  • PDF

Synthesis and Structure Dinitroethylenediamine Palladium(II) (Dinitroethylenediamine Palladium(II)의 합성 및 결정구조 연구)

  • Namgung Hae
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.74-77
    • /
    • 2004
  • The crystal structure of Dinitroethylenediaminepalladium(II), $Pd(C_2H_8N_2)(NO_2)_2$, has been determined by X-ray crystallography. Crystal data: a=7.425(3), b=8.480(4), c=11.885(2) ${\AA}$, Orthorhombic, $A2_1ma$ (Space Group No=36), Z=4, V=748.3(4) ${\AA}^3,\;D_c=2.295 gcm^{-3},\;{\mu}=2.457mm^{-1}$. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were $R_1=0.0306,\;R_w=0.0802,\;R_{all}=0.0320,\;and\;S=1.166)$ for the observed 377 reflections. Bond lengths and angles of palladium complex are similar to the previously reported data. The complex structure is one dimensional Reiset's salt type analogue showing zigzag chain of Pd-Pd length and angle of 3.762(2) ${\AA}$ and $161.41(5)^{\circ}$. The complex molecules are linked through inter-and intramolecular hydrogen bonds of 3.05(1) and 3.15(1) ${\AA}$ between oxygen and nitrogen.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.

The Crystal Structure of Nicotine Dihydroiodide (Nicotine Dihydroiodide의 結晶構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 1965
  • Crystals of nicotine dihydroiodide, are orthorhombic with space group $p2_12_12_1$.The unit cell of dimensions a=7.61, b=11.01, e=17.27${\AA}$, contains four formula units. The structure has been determined by X-ray diffraction method and has been refined to give the R-index, ${\sum}{\mid}{\mid}F_{\circ}{\mid}-{\mid}F_c{\mid}{\mid}{\div}{\sum}{\mid}F_{\circ}{\mid}$, of 0.16 and 0.14 for $F_{okl}\;and\;F_{hol}$ respectively.The mean lengths of C-C and C-N bonds in pyridine ring are 1.40 and $1.35{\AA}$ and those in pyrolidine ring 1.56 and $1.48{\AA}$ respectively, though accurate measurement of bond length has not been attempted. The six atoms in the pyridine ring are coplanar and on the other hand $C_6,\;C_7,\;C_8$ and $N_2$ atoms in pyrrolidine ring form a plane within accuracy of the analysis, and $C_9$ atom is distant $0.22{\AA}$ out of the plane consist of $C_6,\;C_7,\;C_8$ and $N_2$ aoms. The normals to the two planes form an angle of $94^{\circ}$ with each other. Iodine atom is distant $3.55{\AA}$ from nitrogen atom in pyridine ring and the other iodine atom $3.58{\AA}$ from nitrogen atom in pyrrolidine ring, so that the nitrogen and iodine atoms are firmly linked.It seems that the only forces binding nicotine dihydroiodide molecules together in the crystal are Van der Waals forces.

  • PDF

Flexural Behavior of Reinforced Concrete Beams with Strengthening Length of Carbon Fiber Sheets (탄소섬유쉬트의 보강길이에 따른 R/C보의 휨 거동)

  • Shin, Sung Woo;Ahn, Jong Mun;Lee, Kwang Soo;Ban, Byung Lyul;Yeom, Sung Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.136-141
    • /
    • 1998
  • It is demanded to obtain the design data for bond length of the strengthening carbon fiber sheets. An objectives of this study is to provide preliminary data of rational strengthening design method which is adequate to current domestic status. The present experimental study was performed to evaluate flexural strengthening effects of steel reinforced concrete beams strengthened with carbon fiber sheets. Following conclusions can be extracted. It is revealed that the maximum load carrying capacity is increased up to 9% when the reinforced concrete beams were strengthened with 1-ply of carbon fiber sheet which is half-width of beam. The performance of reinforced concrete sections were improved due to the strengthening carbon fiber sheets on the tensile side of beams. It is believed that the strengthening length of carbon fiber sheets must be provided as (0.5l+3d) to secure the ductile capacity of above three for the flexural strengthening of reinforced concrete beams.

  • PDF

NEW QUANTITATIVE MEASURING TECHNIQUE FOR MICROLEAKAGE OF THE RESTORED TOOTH THROUGH 3D RECONSTRUCTION (3차원 재구성법을 이용한 수복물의 정량적 미세누출도 측정)

  • Ha, Sang-Yoon;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.413-422
    • /
    • 2004
  • Established microleakage tests have their own disadvantages. In this study, 3D reconstruction method was tried to overcome these disadvantages. Four types of microleakage tests were used and relationships among them were estimated: penetrated dye volume: marginal adaptability: degree of dye penetration and relative penetrated length to cavity wall. Twenty-four Class V cavities were bulk filled with composite (Esthet X) following surface treatments: N group (no treatment): E group (etching only): T group (etching + Prime & Bond NT). 50% silver nitrate was used as a dye solution after thermocycling ($5^{\circ}C{\;}&{\;}55^{\circ}C$, 1.000 times). Teeth were serially ground with a thickness of 0.2 mm. Volume of dye penetration was estimated from a three-dimensionally reconstructed image with a software (3D-DOCTOR). Percentage of margin without gap was estimated from SEM and degree of dye penetration and the relative length of dye penetration to overall cavity wall were also estimated. ANOVA and Scheffe test for dye volume, Kruskal-Wallis and Mann-Whitney test for marginal quality, Spearman's rho test for checking of relationships among methods were used. The results were as follows: 1. Dye penetration could be seen from several directions, furthermore, its volumetric estimation was possible. 2. Reverse relationship was found between dye volume and marginal quality (r = -0.881/ p = 0.004). 3. Very low relationship was seen between dye volume and two-dimensional tests (degree of dye penetration and relative length). However, 2D evaluation methods showed high relationship (p = 0.002-0.054) each other. 4. Three times vertical section could be recommended as a 2D test.

Structural suitability of GdFeO3 as a magnetic buffer layer for GdBa2Cu3O7-x superconducting thin films

  • Park, H.S.;Oh, J.Y.;Song, B.H.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.14-18
    • /
    • 2021
  • We investigated the structural suitability of GdFeO3 (GdFO) as a buffer layer for the GdBa2xCu3O7-x (GdBCO) superconducting films. GdFO films with different thicknesses and GdBCO thin films were all prepared by using a pulsed laser deposition technique. The analyses of X-ray diffraction and EXAFS data indicates that the c-axis parameter increases and the Fe-O bond length decreases with the GdFO thickness due to the compressive stain induced by the lattice mismatch between GdFO and STO substrate and as a result, the Debye-Waller factor, an index of disorder in the local structure near the Fe-O bond, increases with the GdFO thickness. However, for the GdBCO/GdFO bilayer structure, the Debye-Waller factor decreases as the GdFO thickness increases indicating a diminished disorder by the structural coupling between GdFO and GdBCO. These results indicate that an appropriate thickness of GdFO is required to be utilized as a magnetic buffer layer for the GdBCO superconducting films.

The Rietveld Structure Refinement of Natural Phlogopite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 금운모 결정에 대한 리트벨트 구조분석)

  • 이철규;송윤구;전철민;김신애;성기훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • The Rietveld structure refinement for the natural trioctahedral mica, phlogopite-1M (Parker Mine, Quebec, Canada) has been done by high resolution neutron powder diffraction at $25^{\circ}C$ and -263$^{\circ}C$. The structural formula of phlogopite determined by electron probe microanalysis is $K_2$(M $g_{4.46}$F $e_{0.83}$A $l_{0.34}$ $Ti_{0.22}$)(S $i_{5.51}$A $l_{2.49}$) $O_{20}$(O $H_{3.59}$ $F_{0.41}$). Cell parameters are a=5.30∼5.31 $\AA$, b=9.18∼9.20 $\AA$, c=10.18∼10.21 $\AA$, $\beta$=100.06∼100.08$^{\circ}$. Refinements converged to R values in the range of $R_{p}$=2.35%, $R_{wp}$=3.01%, respectively. In this study, the OH bond length is calculated to 0.93 $\AA$ at room temperature and 1.03 $\AA$ at -263$^{\circ}C$, and the angles between OH vector and (001) plane are obtained 93.4$^{\circ}$∼93.6$^{\circ}$. The decrease in the length of OH with the increase in temperature should be due to the hydrogen bonding in the structure of phogopite.e.e.f phogopite.e.e.