• Title/Summary/Keyword: C-Arm

Search Result 701, Processing Time 0.027 seconds

Development of cooperating robot arms with ultra light weight (초경량 양팔로봇의 개발)

  • Choi H.S.;Moon W.J.;Kim B.G.;Lim K.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.67-68
    • /
    • 2006
  • In this paper, a new revolute cooperating robot arms with 12 d.o.f was developed for autonomous moving robots. The robot ann was designed to have the load capacity of 10 Kg. For this, a new joint actuator based on the fourbar link mechanism was employed. As a control system for the robot arm, a distributed control system was developed composed of the main controller and five motor controller for the ann joints. The main controller and the motor controller were developed using the ARM microprocessor and the TMS320c2407 processor, respectively. To validate the performance of the robot system, an experiment to support 10 Kg payload was performed.

  • PDF

1-Piece Typed Lower Control Arm Using High Strength Hot Rolled Steel Sheet (고강도 열연 강판 적용 단판형 로어암)

  • Kim, D.;Oh, S.T.;Yoon, C.;Han, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.228-229
    • /
    • 2007
  • As one way of weight saving of the vehicle, 1-piece typed lower control arm has been developed using high strength hot rolled steel sheet. In order to overcome the edge splitting problem during edge flanging or burring process, HER (hole expansion ratio) value of steel sheet was primarily considered. The strength grade of steel sheet and the shape were optimized utilizing Taguchi method.

  • PDF

An ARM Processor Course: Assembly Language Programming of One Embedded System (임베디드 시스템 어셈블리 프로그래밍을 통한 ARM 프로세서 교육)

  • Kim, Do Yeon;Kim, Jun Won;Jeon, Jae Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.560-563
    • /
    • 2020
  • 본 논문은 공학계열 학생들이 어셈블리 프로그래밍을 활용하여 임베디드 시스템(ARM 프로세서)을 학습하는 교육 과정을 소개한다. 이 교육 과정은 어셈블리 프로그래밍을 통해 실제 임베디드 시스템을 실습하여 학생들이 전공 교과 과정에서 학습한 마이크로프로세서 이론을 확인하고 이해하도록 도와준다. 임베디드 시스템을 학습하기 위해 Texas Instruments 의 TM4C123GH6PGE 마이크로 컨트롤러가 탑재된 평가보드가 사용되었다. 교육 과정은 선행된 마이크로프로세서 이론 수업 진행에 맞추어 과제가 학생 개인에게 주어지며, 학생들은 결과물을 직접 시연하는 방법으로 과제를 평가 받았다. 본 논문은 이론 수업에 맞물려 진행된 과제의 일정과 과제 내용에 대해 설명한다.

Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis (유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화)

  • Son, Hyun-Sung;Choi, Byung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.

OPTIMAL SHAPE DESIGN OF THE FRONT WHEEL LOWER CONTROL ARM CONSIDERING DYNAMIC EFFECTS

  • Kang, B.J.;Sin, H.C.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.309-317
    • /
    • 2007
  • In this study, we conducted a vibration fatigue analysis of the lower control arm in a vehicle suspension system. The vehicle was driven during the tests so that the dynamic effects could be taken into account. The dynamic load of the frequency domain was superimposed on the frequency response analysis. We performed a virtual proving ground test using multi-body dynamics, along with a finite element analysis and fatigue life predictions. Shape optimization was also considered using the design of the experimental approach, and a response surface analysis was performed to improve the durability performance of the lower control arm. We identified the elements that had the most influence on the optimal shape of the finite element model and analyzed the sensitivity of those elements. Then the optimal points that minimized the amount of damage to the areas of interest were determined through a response surface analysis. The results suggested that the fatigue life of the model increased as its mass was not increased excessively, and demonstrated that these design procedures yielded an appropriate optimized lower control arm model.

FPGA-Based Hardware Accelerator for Feature Extraction in Automatic Speech Recognition

  • Choo, Chang;Chang, Young-Uk;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2015
  • We describe in this paper a hardware-based improvement scheme of a real-time automatic speech recognition (ASR) system with respect to speed by designing a parallel feature extraction algorithm on a Field-Programmable Gate Array (FPGA). A computationally intensive block in the algorithm is identified implemented in hardware logic on the FPGA. One such block is mel-frequency cepstrum coefficient (MFCC) algorithm used for feature extraction process. We demonstrate that the FPGA platform may perform efficient feature extraction computation in the speech recognition system as compared to the generalpurpose CPU including the ARM processor. The Xilinx Zynq-7000 System on Chip (SoC) platform is used for the MFCC implementation. From this implementation described in this paper, we confirmed that the FPGA platform is approximately 500× faster than a sequential CPU implementation and 60× faster than a sequential ARM implementation. We thus verified that a parallelized and optimized MFCC architecture on the FPGA platform may significantly improve the execution time of an ASR system, compared to the CPU and ARM platforms.

Compression Molding Analysis of LFT-D System for Vehicle Trailing Arm (트레일링 암 생산용 LFT-D 시스템에서의 압축성형 해석)

  • Park, Bo-Gyu;Jung, Jin Woo;Jung, Han-Kyu;Park, Si-Woo;Ha, Dong Soo;Choi, Hyen Yel
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.133-138
    • /
    • 2017
  • Recently, CFRP composites are widely used as lightweight materials have with excellent mechanical properties and can beare widely used in various fields. In general, thermosetting resins are used for CFRP. However, in recent years, studies have been carried out using thermoplastic resins have been actively carried out to overcome the disadvantages of thermosetting resins. The LFT-D system is a molding method in which a fiber is directly cut to a the desired length while being impregnated with a thermoplastic resin to produce a compound and that is then press-molding molded to form the product. In this paper, before the production of the trailing arm, the compression molding analysis was carried out in order to grasp the problems that may occur during production. Through cCompression molding analysis was applied to calculate of the minimum press pressure and to compare and analysis analyze the molding conditions characteristic required to formfor forming the trailing arm.

Implementation and Verification of JPEG Decoder IP using a Virtual Platform (가상 플랫폼을 이용한 JPEG 디코더 IP의 구현 및 검증)

  • Jung, Yong-Bum;Kim, Yong-Min;Hwang, Chul-Hee;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.1-8
    • /
    • 2011
  • The requirement of a system-on-a-chip (SoC) design is increasing, which combines various and complex functional units on a single device. However, short time to market prohibits to release the device. To satisfy this shorter time-to-market, verification of both hardware and software at the same time is important. A virtual platform-based design method supports faster verification of these combined software and hardware by reusing pre-defined intellectual properties (IP). In this paper, we introduce the virtual platform-based design and redesign the existing ARM processor based S3C2440A system using the virtual platform-based method. In addtion, we implement and evaluate the performance of a JPEG decoder on the S3C2440A virtual platform. Furthermore, we introduce an optimized technique of the JPEG decoder using the ARM based inline assembly language, and then verify the performance improvement on the virtual platform. Such virtual platform-based design allows to verify both software and hardware at the same time and can meet the requirement of the shorter time-to-market.

Heterochromatic Knob Number and Karyotype in Korean Indigenous Maize (한국 재래종 옥수수 염색체의 Heterochromatic Knob 수와 핵형)

  • In Sup, Lee;Hee Bong, Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.446-451
    • /
    • 1997
  • A Giemsa C-banding method was used for the identification of somatic chromosomes and heterochromatic knob positions in Korean indigenous maize(Zea mays L.). Total of 10 inbred stocks were examined and their knob numbers ranged from 6 to 12. In comparison of homologous chromosomes of two stocks of Waesungri and PI 213749, arm ratios and relative length of chromosomes were different between genotypes. In comparison of arm ratios, all the homologous chromosomes except chromosome 2 were different each other. In comparison of relative length of chromosomes, that of chromosome 1 in Waesungri and PI213749 was 223.22 and 192.03 respectively. The relative length of homologous chromosomes in Waesungri were generally lager than those of PI213749. A C-banded diagram showing knob positions, arm ratios and relative length of chromosome could be used as a good tool to compare the characteristics of chromosomes of Korean indigenous maize stocks.

  • PDF

ALEX1 Regulates Proliferation and Apoptosis in Breast Cancer Cells

  • Gao, Yue;Wu, Jia-Yan;Zeng, Fan;Liu, Ge-Li;Zhang, Han-Tao;Yun, Hong;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3293-3299
    • /
    • 2015
  • Background: Arm protein lost in epithelial cancers, on chromosome X (ALEX) is a novel subgroup within the armadillo (ARM) family, which has one or two ARM repeat domains as opposed to more than six-thirteen repeats in the classical Armadillo family members. Materials and Methods: In the study, we explore the biological functions of ALEX1 in breast cancer cells. Overexpression of ALEX1 and silencing of ALEX1 were performed with SK-BR3 and MCF-7 cell lines. Cell proliferation and colony formation assays, along with flow cytometry, were carried out to evaluate the roles of ALEX1. Results: ALEX1 overexpression in SK-BR3 breast cancer cells inhibited proliferation and induced apoptosis. Furthermore, depletion of ALEX1 in MCF-7 breast cancer cells increased proliferation and inhibited apoptosis. Additional analyses demonstrated that the overexpression of ALEX1 activated the intrinsic apoptosis cascades through up-regulating the expression of Bax, cytosol cytochrome c, active caspase-9 and active caspase-3 and down-regulating the levels of Bcl-2 and mitochondria cytochrome c. Simultaneouly, silencing of ALEX1 inhibited intrinsic apoptosis cascades through down-regulating the expression of Bax, cytosol cytochrome c, active caspase-9, and active caspase-3 and up-regulating the level of Bcl-2 and mitochondria cytochrome c. Conclusions: Our data suggest that ALEX1 as a crucial tumor suppressor gene has been involved in cell proliferation and apoptosis in breast cancer, which may serve as a novel candidate therapeutic target.