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I. INTRODUCTION 
 

In recent times, the demand for speech recognition 

technology has dramatically increased for easier use of 

machines. The development of new interfaces performing 

exactly what humans want to do has been in the spotlight. 

Scientists first began to explore the possibilities of speech 

recognition in the 1970s, but because of the algorithm 

complexity, the development of speech recognition slowed 

down considerably. Then, in the late 2000s, the development 

of speech recognition picked up pace because of the use of 

high-speed computers, improvement in the digital signal 

process, and a drop in the prices of mass memories.  

The mel-frequency cepstrum coefficient (MFCC) method 

has been widely used for feature extraction in automatic 

speech recognition (ASR). In the past few decades, the 

MFCC process was optimized for CPU-based ASR systems 

[1-5]. Recently, highly optimized MFCC algorithms for the 

Field-Programmable Gate Array (FPGA), Graphics Pro-

cessing Unit (GPU), and Advanced RISC Machine (ARM) 

have been proposed. In particular, highly parallelized 

MFCC architectures on the FPGA and GPU platforms have 

been shown to exhibit very low execution times [6-12]. 

In [6], the MFCC process was implemented on the 

NVIDIA GTX580 GPU platform, which demonstrates a 

90× speedup as compared to the CPU-based system at 

less than 0.01% in real time. In [10], the MFCC process 

was implemented on the Xilinx Virtex-II XC2VP100 
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Abstract 

We describe in this paper a hardware-based improvement scheme of a real-time automatic speech recognition (ASR) system 

with respect to speed by designing a parallel feature extraction algorithm on a Field-Programmable Gate Array (FPGA). A 

computationally intensive block in the algorithm is identified implemented in hardware logic on the FPGA. One such block is 

mel-frequency cepstrum coefficient (MFCC) algorithm used for feature extraction process. We demonstrate that the FPGA 

platform may perform efficient feature extraction computation in the speech recognition system as compared to the general-

purpose CPU including the ARM processor. The Xilinx Zynq-7000 System on Chip (SoC) platform is used for the MFCC 

implementation. From this implementation described in this paper, we confirmed that the FPGA platform is approximately 

500× faster than a sequential CPU implementation and 60× faster than a sequential ARM implementation. We thus verified 

that a parallelized and optimized MFCC architecture on the FPGA platform may significantly improve the execution time of 

an ASR system, compared to the CPU and ARM platforms. 
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FPGA platform, which demonstrates a 150× speedup as 

compared to a CPU-based system at less than 0.09% in 

real time. In [5, 14], researchers attempted to optimize 

the ASR system on an ARM-based platform, which has been 

studied extensively because of the considerable increase in 

the use of mobile devices.  

According to previous studies [4-6, 10], a highly 

parallelized and optimized MFCC architecture on the FPGA 

platform can improve the execution time of an automatic 

speech recognition (ASR) system as compared to the CPU. 

In this paper, we propose a highly parallelized and 

optimized MFCC architecture implemented on the Xilinx 

Zynq-7000 system on a chip (SoC) platform and demon-

strate that it is considerably faster than the CPU and the 

ARM processor. A C-based MFCC algorithm is executed 

on the CPU and the ARM, and the Verilog HDL MFCC 

algorithm is implemented on FPGA [13].  

The rest of this paper is composed of the following four 

sections: background, design description, analysis and 

verification of results and performance, and conclusion. 

 

II. BACKGROUND 

Feature extraction is a process that extracts valid feature 

parameters from an input speech signal. Even if the same 

word is spoken, no two speech instances can produce the 

same speech waveform. The reason for this phenomenon is 

that the speech waveform includes not only speech 

information but also the emotional state and tone of the 

speaker. Therefore, the goal of speech feature extraction is 

to extract feature parameters that represent speech infor-

mation. Further, this process is a part of compressing speech 

signals and modeling the human vocal tract. The feature 

parameters are devised to represent the phonemes accurately 

for speech recognition. Linear predictive coefficients (LPCs) 

and MFCCs are commonly used for the abovementioned 

feature extraction [3]. 

 

A. LPC Feature Extraction 

 

LPC feature extraction starts with attempts to predict the 

value of the current sample from the total sum of a certain 

number of past samples multiplied with certain coefficients. 

The coefficients are called LPCs when in terms of the 

transfer function, the coefficients are formed in an electrode 

model (all-pole). Each polarity represents the position of the 

resonance frequency in the frequency domain and the 

transfer function of the vocal tract in the form of a spectral 

envelope approximation. For extracting the LPCs, the 

Levinson–Durbin algorithm was developed; it obtains the 

autocorrelation for a segment of speech and efficiently 

computes the LPCs by using a recursive method [1, 3]. 

B. MFCC Feature Extraction 
 

MFCC feature extraction is a cepstral coefficient 

extraction method that reflects the characteristics of hearing. 

The aspect of the human ear responding to a frequency 

change is not linear but in the mel scale, which is similar to 

the logarithmic scale. According to the mel scale, a low 

frequency is sensitive to small changes, but the sensitivity 

decreases with an increase in the frequency. Therefore, 

MFCC is a correlation method performed during the fre-

quency analysis step of the feature extraction [8]. 

 

1) Pre-emphasis 

The input speech signal goes through a pre-emphasis 

filter, which has high-pass filter characteristics. The reason 

for using this high-pass filter is to model the frequency 

characteristics of the human external ear and middle ear. 

The high-pass filter compensates the attenuation by 20 

dB/dec of the speech signal from the lips in order to obtain 

the vocal tract characteristics. Further, the high-pass filter 

compensates for the fact that the human auditory system is 

sensitive in the spectral region over 1 kHz. Once the input 

speech signal goes through a pre-emphasis filter, low-

frequency values decline but high-frequency values get 

emphasized and boost the vocal tract characteristics. The 

pre-emphasis filter can be expressed by the following 

equation: 

 

𝑌[𝑛] = 𝑋[𝑛] − 𝑎𝑋[𝑛 − 1], 
 

where a denotes the pre-emphasis coefficient, n the time, 

and X the input data. 

 

2) Frame Blocking and Hamming Windowing 

After the pre-emphasis process, the input speech signal 

is divided into frame blocks of 16 ms in order to extract 

the feature parameters of the signal. The reason for 

dividing the input signal into frames of 16 ms is that the 

human voice has a stationary feature in a 16-ms frame. 

After dividing the input signal into frames, we extract 

the frequency feature of each frame. At the edges of 

each frame, there are discontinuities in the input signal 

that contain unnecessary information. In order to 

minimize the discontinuities at the edges of the frames, 

each frame is multiplied with the window coefficients, as 

shown in Fig. 1. For the window process, we can use the 

Hanning, Hamming, Blackman, and Kaiser methods. In 

this study, we applied the commonly used Hamming window 

method as follows: 

 

𝑊𝐻(𝑛) = 0.54 − 0.46 cos(
2𝜋𝑛

𝑁−1
). 
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Fig. 1. Hamming window process. 

 

 

Fig. 2. Power spectrum results. 

 

3) Fast Fourier Transform (FFT) 

In order to extract the feature parameters of the input 

speech, the FFT algorithm can be applied to convert the 

time domain into the frequency domain to figure out the 

frequency characteristics of the input. In the time domain, a 

speech signal has discrete non-periodic features. Through a 

FFT, which converts the time domain into the frequency 

domain, a speech signal is transformed into a continuous 

periodic signal. The FFT algorithm is an efficient and fast 

algorithm for executing a discrete Fourier transform (DFT) 

and its inverse transform. 

The N-point DFT equation of a sequence x(n) can be 

described as follows: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0 . 

In the above equation, 𝑒−𝑗2𝜋
𝑘𝑛

𝑁  rotates clockwise along 

the kn value in a complex plane. Because of the rotating 

feature, 𝑒−𝑗2𝜋
𝑘𝑛

𝑁  is called the twiddle factor and is 

represented as 𝑊𝑁
𝑘𝑛. 

 

4) Power Spectrum 

In order to calculate the magnitude of the output of the 

FFT to emphasize a specific frequency feature, the energy 

spectrum is estimated. The energy spectrum is found to be 

real and symmetric (see Fig. 2). Because of its symmetric 

properties, we can use only half of the output points in the 

next step, and doing so helps to reduce the computational 

complexity. 

1

𝑁
|𝑆(𝑚, 𝑘)|2 =

1

𝑁
(𝑆𝑟

2(𝑚, 𝑘) + 𝑆𝑖
2(𝑚, 𝑘)), 

where m represents the frame index and k indicates the 

frequency index (k = 0, 1, …, N – 1). 

  

Fig. 3. Mel-filter bank.              Fig. 4. Mel-filter coefficients. 

 

 

5) Mel-Filter Bank 

The human ear responds non-linearly to a speech signal. 

When the speech recognition system performs a non-linear 

process, it improves the recognition performance. By 

applying a mel-filter bank, we can obtain a non-linear 

frequency resolution. The mel-filter bank method is widely 

used in the speech recognition process.  

As shown in Fig. 3, the mel-filter bank has a triangular 

shape and is applied to the output of the energy spectrum. 

The number of items in a mel-filter bank set is normally 

between 20 and 40. In this study, we use 19 mel-filter banks. 

These mel-filter banks are placed on the frequency axis on 

the basis of the mel scale, which is defined below. In order 

to calculate the energy of each mel-filter bank, the output of 

the energy spectrum is multiplied by the mel-filter bank 

coefficients and accumulated. By applying the mel-filter 

bank, we obtain 30 mel-filtered energy coefficients to 

ensure useful signal energy, as shown in Fig. 4. 

 

𝑀𝑒𝑙(𝑓) = 2595𝑙𝑜𝑔10 (1 +
𝑓

700
). 

 

6) Mel Cepstrum 

Mel cepstrum is the final output of the MFCC process. 

The logarithm and discrete cosine transform (DCT) of the 

mel-filter bank energy are computed to extract the required 

minimum information. The reason why the log value of the 

mel-filter energy is taken is that the human ear responds to 

the loudness of the sound as a function of the logarithm (see 

Fig. 5). In the next step, DCT is applied to the log filter 

bank parameters in order to extract the appropriate features. 

The DCT equation is defined as follows: 

 

𝑐(𝑖) = √
2

𝐿
∑ 𝑙𝑜𝑔(�̃�(𝑚)) 𝑐𝑜𝑠 [

𝜋𝑖

𝐿
(𝑚 − 0.5)] , 𝑖

𝐿

𝑚=1

= 0,1,… , 𝐶 − 1 

 

where L denotes the number of filter banks (see Fig. 6). 

Eventually, the MFFCs are obtained through all the steps, 

as shown in Fig. 7. 
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Fig. 5. Logarithm coefficients.       Fig. 6. DCT coefficients. 

 

 

Fig. 7. Feature extraction process. 

 

 

III. DESIGN DESCRIPTION 

In this study, the MFCC architecture has been designed to 

be parallelized and optimized on the Xilinx Zynq-7000 SoC 

platform in order to speed up the real-time speech 

recognition. Further, in order to improve the execution time 

of the MFCC process, a well-designed FFT algorithm was 

developed as part of Carnegie Mellon University (CMU)’s 

Spiral Project [15]. The C-based MFCC architecture for the 

CPU and ARM experiment was developed as part of 

Massachusetts Institute of Technology (MIT)’s feature 

extraction project [13]. 

In order to simulate and implement the feature extraction 

process on CPU, ARM, and FPGA, MATLAB v7.11 

(R2020b), Microsoft Visual Studio Express 2013, and 

Xilinx Vivado Design Suite (v2013.2), Integrated Software 

Environment (ISE), Software Development Kit (SDK), and 

High-Level Synthesis (HLS) tools were employed. 

The objective of this study is to determine the impro-

vement of the speech recognition system in terms of speed 

by implementing a parallel MFCC process on FPGAs to 

perform the feature extraction process. 

 

A. MFCC Simulation on CPU and ARM 

 

As mentioned above, the C-based MFCC architecture was 

developed as part of MIT’s feature extraction project. For 

this experiment, a 6-s Wall Street Journal wave file was 

used as the MFCC input voice. The sample frequency of the 

speech signal was 16000 Hz. In order to extract the 

frequency feature, the speech signal was divided into 16-ms 

samples. When the sample frequency was 16000 Hz, we 

obtained 256 16-ms samples (0.016 s × 16000 Hz = 256 

samples). The 16-ms signal block had a 10-ms overlap with 

the next 16-ms signal block because the signal overlap was 

required to recover the discontinuity of the signal. However, 

when the overlap was applied to the signal, signal distortion 

occurred. To prevent the signal distortion due to the signal 

overlap, the hamming window module was applied. In order 

to apply the MFCC process to the 6-s Wall Street Journal 

waveform speech signal with the signal overlap, the speech 

signal was divided into 1025 frames (6 s × 16000 Hz = 

104711 samples, 0.016 s × 16000 Hz = 256 samples, (1 + 

((104711 – 256)/100) = 1044.55)). The CPU experiment 

was conducted using Microsoft Visual Studio, and the ARM 

experiment was performed using Xilinx SDK. 

 

B. MFCC Simulation on FPGAs 

 

The MFCC process was implemented in the Verilog 

hardware description language (HDL); it included the 

hamming window, FFT, power spectrum, mel-filter, log-

arithm, and DCT processes. The FPGA experiment was 

executed in the Xilinx ISE tool. 

Fig. 8 describes the MFCC process. Overall, the MFCC 

process consisted of 39 distinct modules (1 hamming 

window, 1 FFT, 1 power convertor, 19 mel-filters, 1 log 

calculator, and 16 DCTs) and 57 total module instances (1 

hamming window, 1 FFT, 1 power convertor, 19 mel-filters, 

19 log calculators, and 16 DCTs). As mentioned before, in 

order to improve the execution time of the MFCC process, a 

well-designed 16-bit 256-point FFT algorithm was developed 

 
Fig. 8. Block diagram of the MFCC processing unit. 
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as part of CMU’s Spiral Project. For a highly parallelized 

and optimized MFCC structure, the mel-filter, log calculator, 

and DCT modules were implemented as a parallel structure.   

 

 

IV. ANALYSIS AND VERIFICATION OF 
RESULTS AND PERFORMANCE 

We verified the speed improvement of the MFCC process 

on FPGA as compared to the CPU and ARM process. For 

the test, the 6-s Wall Street Journal wave file was used, 

which consisted of 1025 frames. The result was analyzed by 

comparing the MFCC execution time of one frame. 

 

A. Experimental Setup 
 

The experiment uses Intel Core i5 M 480 CPU at 2.67 

GHz, Dual ARM Cortex-A9 MPCore at 667 MHz, and 

Zynq-7000 FPGA at 111 MHz. In order to simulate and 

evaluate the MFCC process time on the CPU, ARM, and 

FPGA, we used Microsoft Visual Studio Express 2013 for 

the CPU evaluation, Xilinx SDK v2013.4 for the ARM 

evaluation, and the Xilinx ISE v14.7 tool for the FPGA 

evaluation.  

 

B. Analysis of Feature Extraction 
 

For the analysis, the execution time per frame in the 

MFCC process was compared among the CPU, ARM, and 

FPGA. The MFCC process was divided into the following 

five steps: hamming window, 256-point FFT, power 

convertor, mel-filter and log convertor, and DCT.  

 

Table 1. Average elapsed time per frame in MFCC process 

 
CPU (µs) ARM (µs) FPGA (µs) 

Hamming 30.688 0.006 1.415 

FFT 2164.624 148.759 1.521 

Power 4.973 2.669 1.414 

Mel-filter and log 3.324 0.500 0.0438 

DCT 8.305 13.122 0.0219 

Total 2211.915 165.055 4.415 

 
 

Table 2. Relative speedup of MFCC process compared to CPU 

 
CPU (µs) FPGA (µs) 

Relative  

speedup 

Hamming 30.688 1.415 21× 

FFT 2164.624 1.521 1423× 

Power 4.973 1.414 3× 

Mel-filter and log 3.324 0.0438 75× 

DCT 8.305 0.0219 379× 

Total 2211.915 4.415 501× 

Table 3. Relative speedup of MFCC process compared to CPU 

  ARM (µs) FPGA (µs) 
Relative  

speedup 

Hamming 0.006 1.415 0.004× 

FFT 148.759 1.521 97× 

Power 2.669 1.414 1.8× 

Mel-filter and log 0.500 0.0438 11× 

DCT 13.122 0.0219 599× 

Total 165.055 4.415 37× 

 

 

Table 1 denotes the execution time on each platform in 

micro-seconds. Tables 2 and 3 describe the relative speedup 

of the MFCC process on FPGA compared to that on the 

CPU and ARM platforms. 

Through the analysis, we confirmed that the FPGA 

platform is approximately 500× faster than a sequential 

CPU platform and 60× faster than a sequential ARM 

platform, and verified that a highly parallelized and 

optimized MFCC architecture on the FPGA platform 

significantly improves the execution time of an ASR system 

as compared to the CPU and ARM platforms. In order to 

improve the execution time of the MFCC process on FPGA, 

a well-designed 256-point FFT algorithm was developed as 

part of CMU’s Spiral Project [15]. The C-based MFCC 

architecture for the CPU and ARM platforms was developed 

as part of MIT’s feature extraction project [6]. 

 

 

 
 

 
 

Fig. 9. Percentage of time spent on each processing stage in the MFCC 

process on the CPU and ARM. 
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Fig. 10. Percentage of time spent on each processing stage in the 

MFCC process on FPGA. 

 

 

 

As seen in Fig. 9, the FFT process consumes a large 

amount of computational time on the CPU and ARM. CPU 

and ARM consume 97.8% and 90.1% of the execution time, 

respectively, in the MFCC process. On the other hand, as 

shown in Fig. 10, on the FPGA platform, the FFT process 

consumes 34.4% of the execution time in the MFCC process 

and significantly reduces the computational time compared 

to CPU and ARM. 

 

V. CONCLUSION 

The objective of this study was to determine the 

improvement of the speech recognition system in terms of 

speed by implementing a parallel feature extraction process 

on FPGA for feature extraction. The Xilinx Zynq-7000 SoC 

platform was used for demonstrating the MFCC imple-

mentation for the feature extraction process. We confirmed 

that the FPGA platform is approximately 500× faster than a 

sequential CPU platform and 60× faster than a sequential 

ARM platform, and verified that a highly parallelized and 

optimized MFCC architecture on the FPGA platform 

significantly improves the execution time of an ASR system 

compared to the CPU and ARM platforms. 
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