• Title/Summary/Keyword: C-Ag nanoparticles

Search Result 79, Processing Time 0.022 seconds

Nano-Composite Solder Technology for the Improvement of Solder Joint Properties (무연솔더 접합부 특성향상을 위한 나노복합솔더 기술)

  • Ki, Won-Myoung;Lee, Young-Kyu;Lee, Chang-Woo;Yoo, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.9-17
    • /
    • 2011
  • Nano-composite solders have been studied to improve the properties of Pb-free solder joints. The nanoparticles in the composite solders were carbon nanotubes(CNTs), metals (Ag, Ni, Cr, etc.), ceramics (SiC, $ZrO_2$, $TiB_2$, etc.). To fabricate the nano-composite solders, mechanical mixing methods and in-situ fabrication method has been used for well-dispersed nano phase. The characteristic properties of the nano-composite solders were high creep resistance, low undercooling, low IMC growth rate and fine microstructures. More researches on the nano-composite solders are required to improve the processibility and the reliability of the nano-composite solder joints.

Particle Behavior of Silver Nanoparticles Synthesized by Electrical Resistance Analysis (전기저항 분석을 통한 은나노 입자 합성 시의 입자거동 연구)

  • Yoon, Young Woo;Ryu, Si Hong;Yang, Sung Joo;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.531-538
    • /
    • 2015
  • This study examined the size and shape of the nano-silver particle through the analysis of electrical resistance when synthesizing nano-sized silver by using the chemical liquid reduction. Changes in particle behaviors formed according to the changes in electronic characteristics by electric resistance in each time period in the beginning of reduction reaction in a course of synthesizing the nano-silver particle formation were studied. In addition, analysis was conducted on particle behaviors according to the changes in concentration of $AgNO_3$ and in temperature at the time of reduction and nucleation and growth course when synthesizing the particles based on the particle behaviors were also examined. As the concentration of $AgNO_3$ increased, the same amount of resistance of approximately $5{\Omega}$ was increased in terms of initial electronic resistance. Furthermore, according to the result of formation of nuclear growth graph and estimation of slope based on estimated resistance, slops of $6.25{\times}10^{-3}$, $2.89{\times}10^{-3}$, and $1.85{\times}10^{-3}$ were derived from the concentrations of 0.01 M, 0.05 M, and 0.1 M, respectively. As the concentration of $AgNO_3$ increased, the more it was dominantly influenced by the nuclear growth areas in the initial phase of reduction leading to increase the size and cohesion of particles. At the time of reduction of nano-silver particle, the increases of initial resistance were $4{\Omega}$, $4.2{\Omega}$, $5{\Omega}$, and $5.3{\Omega}$, respectively as the temperature increased. As the temperature was increased into $23^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$, and $80^{\circ}C$, slopes were formed as $4.54{\times}10^{-3}$, $4.65{\times}10^{-3}$, $5.13{\times}10^{-3}$, and $5.42{\times}10^{-3}$ respectively. As the temperature increased, the particles became minute due to the increase of nuclear growth area in the particle in initial period of reduction.

Silicatein: Biosilicification and Its Applications (실리카테인: 생규화 및 응용)

  • Yang, Byeongseon;Yun, Jin Young;Cha, Hyung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.34-43
    • /
    • 2018
  • Silicon has become of increasing importance as the basic element of many high-technology products. Its synthesis is very difficult requiring high temperature solid-state reactions (> $1000^{\circ}C$) or lower temperature methods ($100-200^{\circ}C$) involving hydrothermal and solvothermal reactions under extreme pH conditions. In nature, on the other hand, a wide range of living organisms have collectively evolved the means of biosilicification at the astounding rate of gigatons/year. This is impressive because biosilicification in these organisms occurs under mild physiological conditions. Marine sponges possess the ability to sequester soluble silicon sources from their environments and assemble them into intricate 3D architecture. The advent of molecular biology has recently made it possible to glean molecular information about biosilicification from these systems and it turned out that enzyme silicatein is the core of biosilicification. In this review, biosilicification regulated by silicatein and its mechanism are described. Also, production of silicatein through recombinant technology and several applications of recombinant silicatein are described including immobilization of silicatein, formation of Au or Ag nanoparticles on nanowires, nanolithography approaches, core-shell materials, encapsulation, bone replacement materials, and microstructured optical fibers.

Adsorption Characteristics and Structure of 4,4'-Bis(mercaptomethyl)biphenyl on Silver by Surface-enhanced Raman Scattering and Density Functional Theory Calculations

  • Eom, So Young;Lee, Yu Ran;Kim, Hong Lae;Kwon, Chan Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.875-880
    • /
    • 2014
  • Adsorption of 4,4'-bis(mercaptomethyl)biphenyl (44BMBP) on silver nanoparticles has been investigated by surface-enhanced Raman scattering (SERS) spectroscopy. In addition, the Raman spectra of 44BMBP in solid state and in basic condition have been obtained for comparative study to elicit the characteristics of adsorption. The observed Raman and SERS spectra were analyzed comparing with the normal modes and vibrational frequencies from density functional theory (DFT) calculations performed for the feasible structures of 44BMBP molecule. On the basis of excellent agreement between the calculated and the experimental results, the molecule is found to have both the cis- and trans-forms for the mercaptomethyl groups in the solid state as well as in the basic condition. In contrast, the molecule is found to be chemisorbed on the silver surface by forming two Ag-S linkages only in the cis-form but not in the trans-form due to the steric interruption, which indicates the parallel orientation of molecules on the surface. Particularly, the spectral features in the SERS spectra such as the absence of the C-H stretching band and enhancement for the out-of-plane skeletal modes are confirmatory for the parallel geometry through ${\pi}$ interaction between the phenyl rings and the metal surface, based on the electromagnetic surface selection rule.

Analysis of Biocompatible TiO2 Oxide Multilayer by the XPS Depth Profiling

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.156-156
    • /
    • 2017
  • In this work, analysis of biocompatible TiO2 oxide multilayer by the XPS depth profiling was researched. the manufacture of the TiO2 barrier-type multilayer was accurately performed in a mixed electrolyte containing HAp, Pd, and Ag nanoparticles. The temperature of the solution was kept at approximatively $32^{\circ}C$ and was regularly rotated by a magnetic stirring rod in order to increase the ionic diffusion rate. The manufactured specimens were carefully analyzed by XPS depth profile to investigate the result of chemical bonding behaviors. From the analysis of chemical states of the TiO2 oxide multilayer using XPS, the peaks are showed with the typical signal of Ti oxide at 459.1 eV and 464.8 eV, due to Ti 2p(3/2) and Ti 2p(1/2), respectively. The Pd-3d peak was split into Pd-3d(5/2) and Pd-3d(3/2)peaks, and shows two bands at 334.7 and 339.9 eV for Pd-3d3 and Pd-3d5, respectively. Also, the peaks of Ag-3d have been investigated. The chemical states consisted of the O-1s, P-2p, and Ti-2p were identified in the forms of PO42- and PO43-. Based on the results of the chemical states, the chemical elements into the TiO2 oxide multilayer were also inferred to be penetrated from the electrolyte during anodic process.The structure characterization of the modified surface were performed by using FE-SEM, and from the result of biological evaluation in simulated body fluid(SBF), the biocompatibility of TiO2 oxide multilayer was effective for bioactive property.

  • PDF

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

Fabrication Process of Natural Silk Including Ag Nano-particle (은나노 입자가 함유된 천연실크 제조 방법)

  • Jung, I-Yeon;Kang, Pil-Don;Kim, Kee-Young;Ryu, Kang-Sun;Sohn, Bong-Hee;Kim, Yong-Soon;Kim, Mi-Ja;Lee, Kwang-Gill;Chai, Chang-Keun;Koh, Seok-Keun
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.1
    • /
    • pp.24-27
    • /
    • 2007
  • Silkworm fed on the mulberry leaf mixed with silver nanoparticle to produce silver-nanoparticle embedded cocoon. Comparative analysis of silver content of cocoon shell, percentage of pupation and percentage of cocoon-shell weight showed that the optimum concentration and the feeding period of mulberry leaf mixed with silver nanoparticle were 500 ppm and the period from 3 day 5 instar to mounting of silkworm. The silver content of cocoon was observed variously by silkworm breedings. C212 variety makes pale yellow cocoon with the highest silver content(69%). Using the scanning electron microscope, we showed that the size of silver nanoparticles in silk was observed from 26.98 to 99.81nm. Silver-nanoparticle embedded silk is expected to use as high valuable application owing to the different functional properties including antibiotic characteristics and mechanical and electronic properties. The applicable fields expected is antistatic and/or electronic products with biological degradable natural materials.