DOI QR코드

DOI QR Code

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect

초발수 현상을 이용한 나노 잉크 미세배선 제조

  • 손수정 (한국기계연구원 부설 재료연구소) ;
  • 조영상 (한국산업기술대학교 생명화학공학과) ;
  • 나종주 (한국기계연구원 부설 재료연구소) ;
  • 최철진 (한국기계연구원 부설 재료연구소)
  • Received : 2013.03.08
  • Accepted : 2013.04.18
  • Published : 2013.04.28

Abstract

This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

Keywords

References

  1. K. Alexander, B. M. Matti, A. Shai and M. Shlomo: Macromol. Rapid Commun., 26 (2005) 281. https://doi.org/10.1002/marc.200400522
  2. J. D. Lee, M. J. Kim and S. H. Lee: J. KSES, 30 (2010) 334.
  3. J. H. Kim, C. Y. Lee and J. R. Kim: J. Eng. and Tech., 17 (2008) 77.
  4. Y. I. Lee: J. Kor. Powd. Met. Inst., 19 (2012) 343. https://doi.org/10.4150/KPMI.2012.19.5.343
  5. T. H. P. Chang, M. G. R. Thompson, M. L. Yu, E. Kratchmer, H. S. Kim, K. Y. Lee, S. A. Rishton and S. Zolgharmain: Microelectro. Eng., 32 (1996) 113. https://doi.org/10.1016/0167-9317(95)00366-5
  6. W. A. MacDonald: J. Mater. Che., 14 (2004) 4. https://doi.org/10.1039/b310846p
  7. J. Lewis: Materials today, 9 (2006) 38. https://doi.org/10.1016/S1369-7021(06)71446-8
  8. O. Preining: J. Aerosol Sci., 29 (1998) 481. https://doi.org/10.1016/S0021-8502(97)10046-5
  9. P. Calvert: Chem. Mater., 13 (2001) 3299. https://doi.org/10.1021/cm0101632
  10. H. H. Lee, K. S. Chou and K. C. Huang: Nanotechnology 16 (2005) 2436. https://doi.org/10.1088/0957-4484/16/10/074
  11. L. H. Bac, W. H. Gu, J.C. Kim, B. K. Kim and J. S. Kim: J. Kor. Powd. Met. Inst., 19 (2012) 55 (Korean). https://doi.org/10.4150/KPMI.2012.19.1.055
  12. W. D. Kingery, H. K. Bowen and D. R. Uhlmann: Wiley-Interscience, New York, (1976) 449.
  13. M. N. Rahaman: Dekker, New York (2003) 389.
  14. I. Y. Kim, Y. A. Song, H. C. Jung, J. W. Joung, S. S. Ryu and J. R. Kim: J. electronic Mater., 37 (2008).
  15. J. S. Kang, J. Ryu, H. S. Kim and H. T. Hahn: J. electronic Mater., 40 (2011) 2268. https://doi.org/10.1007/s11664-011-1711-0