DOI QR코드

DOI QR Code

Silicatein: Biosilicification and Its Applications

실리카테인: 생규화 및 응용

  • Yang, Byeongseon (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Yun, Jin Young (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cha, Hyung Joon (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 양병선 (포항공과대학교, 화학공학과) ;
  • 윤진영 (포항공과대학교, 화학공학과) ;
  • 차형준 (포항공과대학교, 화학공학과)
  • Received : 2018.12.05
  • Accepted : 2018.12.20
  • Published : 2018.12.31

Abstract

Silicon has become of increasing importance as the basic element of many high-technology products. Its synthesis is very difficult requiring high temperature solid-state reactions (> $1000^{\circ}C$) or lower temperature methods ($100-200^{\circ}C$) involving hydrothermal and solvothermal reactions under extreme pH conditions. In nature, on the other hand, a wide range of living organisms have collectively evolved the means of biosilicification at the astounding rate of gigatons/year. This is impressive because biosilicification in these organisms occurs under mild physiological conditions. Marine sponges possess the ability to sequester soluble silicon sources from their environments and assemble them into intricate 3D architecture. The advent of molecular biology has recently made it possible to glean molecular information about biosilicification from these systems and it turned out that enzyme silicatein is the core of biosilicification. In this review, biosilicification regulated by silicatein and its mechanism are described. Also, production of silicatein through recombinant technology and several applications of recombinant silicatein are described including immobilization of silicatein, formation of Au or Ag nanoparticles on nanowires, nanolithography approaches, core-shell materials, encapsulation, bone replacement materials, and microstructured optical fibers.

Keywords

References

  1. Muller, W. E. G. Naturwissenschaften. 1995. Molecular phylogeny of metazoa (animals): Monophyletic origin. 82, 321. https://doi.org/10.1007/BF01131528
  2. Simpson, T. L. 1984. The Cell Biology of Sponges; Springer Publishing: New York.
  3. Levi, C., Barton, J. L., Guillemet, C., Le Bras, E., Lehuede, P. J. 1989. A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. Mater. .Sci. Lett. 8, 337. https://doi.org/10.1007/BF00725516
  4. Shimizu K, Cha J, Stucky GD, Morse DE. 1998. Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 95, 6234-6238 https://doi.org/10.1073/pnas.95.11.6234
  5. Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE. 1999. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA 96, 361-365 https://doi.org/10.1073/pnas.96.2.361
  6. Krasko, A., Lorenz, B., Batel, R., Schroder, H. C., Muller, I. M., Muller, W. E. G. 2000. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur. J. Biochem. 267, 4878. https://doi.org/10.1046/j.1432-1327.2000.01547.x
  7. Pozzolini, M., Sturla, L., Cerrano, C., Bavestrello, G., Camardella, L., Parodi, A. M., Raheli, F., Benatti, U., Muller, W. E. G., Giovine, M. 2004. Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar. Biotechnol. 6, 594. https://doi.org/10.1007/s10126-004-3036-y
  8. Barrett, A. J., Rawlings, N. D., Woessner, J. F., Eds. 2004. Handbook of Proteolytic Enzymes, Volume 2: Cysteine, Serine and Threonine Peptidases; Elsevier: London.
  9. Zhou, Y., Shimizu, K., Cha, J. N., Stucky, G. D., Morse, D. E. 1999. Efficient Catalysis of Polysiloxane Synthesis by Silicatein $\alpha$ Requires Specific Hydroxy and Imidazole Functionalities. Angew. Chem., Int. Ed. 38, 779. https://doi.org/10.1002/(SICI)1521-3773(19990315)38:6<779::AID-ANIE779>3.0.CO;2-#
  10. Brinker, C. J., Scherrer, G. W. 1990. Sol-Gel Science: the Chemistry of Sol-Gel Processing; Academic Press: New York.
  11. Henry, M., Jolivet, J. P., Livage, J. 1992. In Chemistry, Spectroscopy and Applications of Sol-Gel Glasses; Reisfeld, R., Ed.; Springer-Verlag: New York; Vol. 77, pp 153.
  12. Sanchez, C., Ribot, F. 1994. Molecular design of hybrid organic-inorganic materials with electronic properties. New J. Chem. 18, 1007.
  13. Bradley, D. C., Mehrotra, R. C., Gaur, D. P. 1978. Metal Alkoxides; Academic Press: London.
  14. Ribot, F., Toledano, P., Sanchez, C. 1991. Hydrolysis-condensation process of .beta.-diketonates-modified cerium(IV) isopropoxide. Chem. Mater. 3, 759. https://doi.org/10.1021/cm00016a035
  15. Mark, J. E. 1996. The Sol-Gel Route to Inorganic-Organic Composites. In Heterogeneous Chemistry ReViews; Wiley & Sons: New York, Vol. 3,p 307.
  16. Weaver, J. C., Morse, D. E. 2003. Molecular biology of demosponge axial filaments and their role in biosilicification. Microsc. Res. Technol. 62, 356. https://doi.org/10.1002/jemt.10401
  17. Sumerel JL, Yang W, Kisailus D, Weaver JC, Choi JH, Morse DE. 2003. Biocatalytic structuredirecting synthesis of titanium dioxide. Chem. Mater. 15, 4804-4809 https://doi.org/10.1021/cm030254u
  18. Tahir MN, Theato P, Muller WEG, Schroder HC, Borejko A, FaiB S, Janshoff A, Huth J, Tremel W. 2005. Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem. Commun. 28, 5533-5535
  19. Bansal V, Rautaray D, Ahmad A, Sastry M. 2004. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14, 3303-3305 https://doi.org/10.1039/b407904c
  20. Kisailus D, Choi JH, Weaver JC, Yang W, Morse DE. 2005. Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. Adv. Mater. 17, 314-318 https://doi.org/10.1002/adma.200400815
  21. Curnow, P., Bessette, P. H., Kisailus, D., Murr, M. M., Daugherty, P. S., Morse, D. E. 2005. Enzymatic Synthesis of Layered Titanium Phosphates at Low Temperature and Neutral pH by Cell-Surface Display of Silicatein-$\alpha$. J. Am. Chem. Soc. 127, 15749. https://doi.org/10.1021/ja054307f
  22. Curnow, P., Kisailus, D., Morse, D. E. 2006. Biocatalytic Synthesis of Poly(l-Lactide) by Native and Recombinant Forms of the Silicatein Enzymes. Angew. Chem., Int. Ed. 45, 613. https://doi.org/10.1002/anie.200502738
  23. Muller WEG, Geurtsen WK, Schroder HC. 2006. Biosilica-adhesive protein nanocomposite materials: synthesis and application in dentistry. US Patent Application No. US60/839,601
  24. Cha, J. N., Stucky, G. D., Morse, D. E., Deming, T. J. 2000. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature. 403, 289. https://doi.org/10.1038/35002038
  25. Adamson, D. H., Dabbs, D. M., Pacheco, C. R., Giotto, M. V., Morse, D. E., Aksay, I. A. 2007. Non-Peptide Polymeric Silicatein $\alpha$ Mimic for Neutral pH Catalysis in the Formation of Silica. Macromolecules. 40, 5710. https://doi.org/10.1021/ma0627929
  26. Brutchey, R. L., Yoo, E. S., Morse, D. E. 2006. Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature. J. Am. Chem. Soc. 128, 10288. https://doi.org/10.1021/ja063107g
  27. Kisailus, D., Schwenzer, B., Gomm, J., Weaver, J. C., Morse, D. E. 2006. Kinetically Controlled Catalytic Formation of Zinc Oxide Thin Films at Low Temperature. J. Am. Chem. Soc. 128, 10276. https://doi.org/10.1021/ja062434l
  28. Brutchey, R. L., Cheng, G., Gu, Q., Morse, D. E. 2008. Positive Temperature Coefficient of Resistivity in DonorDoped BaTiO3 Ceramics derived from Nanocrystals synthesized at Low Temperature. Adv. Mater. 20, 1029. https://doi.org/10.1002/adma.200701804
  29. Schroder, H. C., Anatoli Krasko, A., Brandt, D., Wiens, M., Tahir, M. N., Tremel, W., Muller, W.E.G. 2007. Silicateins, silicase and spicule-associated proteins: synthesis of demosponge silica skeleton and nanobiotechnological applications Porifera Research: Biodiversity, Innovation and Sustainability. 581-592
  30. Tahir MN, Theato P, Müller WEG, Schroder HC, Janshoff A, Zhang J, Huth J, Tremel W. 2004. Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem. Commun. 2848-2849
  31. Sigal, G. B., Bamdad, C., Barberis, A., Strominger, J., Whitesides, G. M. 1996. A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal. Chem. 68, 490. https://doi.org/10.1021/ac9504023
  32. Nawaz Tahir, M., Theato, P., Muller, W. E. G., Schroder, H. C., Borejko, A., Fai, S., Janshoff, A., Huth, J., Tremel, W. 2005. Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem. Commun. 5533.
  33. Tahir MN, Eberhardt M, Therese HA, Kolb U, Theato P, Muller WEG, Schroder HC, Tremel W. 2006. From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO2 nanowires controlled by surface bound silicatein. Angew. Chem. Int. Ed. 45, 4803-4809 https://doi.org/10.1002/anie.200503770
  34. Shukoor MI, Natalio F, Metz N, Glube N, Tahir MN, Therese HA, Ksenofontov V, Theato P, Langguth P, Boissel JP, Schroder HC, Muller WEG, Tremel W. 2008. dsRNA-functionalized multifunctional ${\gamma}-Fe2O3$ nanocrystals: a tool for targeting cell surface receptors. Angew. Chem. Int. Ed. Engl 47, 4748-4752 https://doi.org/10.1002/anie.200704735
  35. Xia Y, Whitesides GM. 1998. Soft lithography. Angew. Chem. Int. Ed. 37, 550-575 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  36. Pisignano D, Maruccio G, Mele E, Persano L, Di Benedetto F, Cingolani R. 2005. Polymer nanofibers by soft lithography. Appl. Phys. Lett. 87, 123109 https://doi.org/10.1063/1.2046731
  37. Alessandro Polini, Stefano Pagliara, Andrea Camposeo, Adriana Biasco, Heinz C. Schroder, Werner E. G. Muller, and Dario Pisignano. 2011. Biosilica Electrically-Insulating Layers by Soft Lithography-Assisted Biomineralisation with Recombinant Silicatein Adv. Mater. 23, 4674-4678 https://doi.org/10.1002/adma.201102691
  38. S. A. Ruiz , C. S. Chen. 2007. Microcontact printing: A tool to pattern. Soft Matter. 3, 1.
  39. Schroder HC, Natalio F, Shukoor I, Tremel W, SchloBmacher U, Wang X, Muller WEG. 2007. Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/ iomimetical confirmation. J. Struct. Biol. 159, 325-334 https://doi.org/10.1016/j.jsb.2007.01.007
  40. Muller WEG, Engel S, Wang X, Wolf SE, Tremel W, Thakur NL, Krasko A, Divekar M, Schroder HC. 2008. Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-$\alpha$ gene. Biomaterials 29, 771-779 https://doi.org/10.1016/j.biomaterials.2007.10.038
  41. Rajesh R. Naik, Morley O. 2005. Stone Integrating biomimetics Materialstoday Volume 8, Issue 9, pp 18-26
  42. Luckarift, H.R., Spain, J.C. , Naik, R.R., Stone, M.O. 2004. Enzyme immobilization in a biomimetic silica support Nature Biotechnology Volume 22, Issue 2, pp 211-213 https://doi.org/10.1038/nbt931
  43. Naik, R.R. , Tomczak, M.M., Luckarift, H.R., Spain, J.C., Stone, M.O. 2004. Entrapment of enzymes and nanoparticles using biomimetically synthesized silica Chemical Communications Volume 10, Issue 15, 7, pp 1684-1685
  44. Knecht, M.R., Wright, D.W. 2004. Dendrimer-mediated formation of multicomponent nanospheres Chemistry of Materials Volume 16, Issue 24, 30, pp 4890-4895 https://doi.org/10.1021/cm049058t
  45. Yamamuro T, Hench LL, Wilson J (eds). 1990. Handbook on Bioactive Ceramics, vol I: Bioactive Glasses and Glass-Ceramics. Boca Raton, FL: CRC Press
  46. Hench LL, Wilson JW. 1984. Surface-active biomaterials. Science 226, 630-636 https://doi.org/10.1126/science.6093253
  47. Schroder HC, Boreiko O, Krasko A, Reiber A, Schwertner H, Muller WEG. 2005. Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res Part B: Appl. Biomater. 75B, 387-392 https://doi.org/10.1002/jbm.b.30322
  48. Muller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schroder HC. 2006. Novel photoreception system in sponges Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens. Bioelectron. 21, 1149-1155 https://doi.org/10.1016/j.bios.2005.04.017
  49. Richard L.B., Daniel E.M. 2008. Silicatein and the translation of its Molecular Mechanism of Biosilification into Low Temperature Nanomaterials Synthesis. Chem. Rev. 108, 4915-4934 https://doi.org/10.1021/cr078256b
  50. Schroder H. C., SchloBmacher U., Boreiko A., Natalio F., Baranowska M., Brandt D., Wang X., Tremel W., Wiens M., and Muller W. E.G. 2009. Silicatein: Nanobiotechnological and Biomedical Applications Progress in Molecular and Subcellular Biology, Volume 47, V, 251-273