• Title/Summary/Keyword: C-AFM

Search Result 803, Processing Time 0.033 seconds

Mechanical properties of polycrystalline 3C-SiC thin films with various doping concentrations (도핑농도에 따른 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.256-260
    • /
    • 2008
  • This paper describes the mechanical properties of poly(polycrystalline) 3C-SiC thin films with various doping concentration, in which poly 3C-SiC thin fil's mechanical properties according to the n-doping concentration 1($9.2{\times}10^{15}cm^{-3}$), 3($5.2{\times}10^{17}cm^{-3}$), and 5%($6.8{\times}10^{17}cm^{-3}$) respectively were measured by nano indentation. In the case of $9.2{\times}10^{15}cm^{-3}n$-doping concentration, Young's modulus and hardness were obtained as 270 and 30 GPa, respectively. When the surface roughness according to n-doping concentrations was investigated by AFM(atomic force microscope), the roughness of poly 3C-SiC thin films doped by 5% concentration was 15 nm, which is also the best of them.

Characterization of $SiO_xC_y$ films deposited by PECVD using BMDSO and Oxygen (HMDSO와 산소를 이용한 PECVD 증착 $SiO_xC_y$필름의 특성연구)

  • 김성룡;이호영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.182-188
    • /
    • 2001
  • Thin films of $SiO_xC_y$ deposited by means of PECVD(plasma enhanced chemical vapor deposition) using HMDSO(hexamethyldisiloxane)/$O_2$ were characterized. The effects of deposition conditions such as RF power, oxygen flow rate and hydrogen flow rate on the chemical bond structure, atomic composition, surface roughness and wear characteristics of the films were investigated by means of FTIR, XPS, AFM and Hazemeter. The deposition rate of $SiO_xC_y$ was greater than 100 nm/min, which is relatively high rate. The XPS results showed that the carbon content in a deposited film was lower than that of previous studies where different organosilicone materials were used. The optimum wear resistance was attained when RF power was 200 Watt and oxygen flow rate was 100 sccm. This study implies that the $HMDSO/O_2$ system is effective in forming a film with a lower carbon content and good abrasion resistance.

  • PDF

Fabrication and Characterization of Bi2O3-MgO-ZnO-Nb2O5 Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작된 Bi2O3-MgO-ZnO-Nb2O5 박막의 제작 및 특성 분석)

  • Bae, Ki-Ryeol;Lee, Dong-Wook;Elanchezhiyan, J.;Lee, Won-Jae;Bae, Yun-Mi;Shin, Byoung-Chul;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2010
  • Pulsed laser deposition is a very efficient technique for fabricating thin films of complex compounds. In the present work, $Bi_2O_3$-MgO-ZnO-$Nb_2O_5$ (BMZN) pyrochlore thin films were deposited on platinized Si substrates at various temperatures by using pulsed laser deposition technique. These films have been characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM) to investigate their structural, morphological properties. MIM structure was manufactured to analyze di-electrical properties of BMZN thin films. XRD results reveal the thin films deposited at less than $400^{\circ}C$ show only amorphous phase, the crystallized thin films was observed when the thin films were prepared temperature at above $500^{\circ}C$. From AFM, it was known that the thin film grown at $400^{\circ}C$ is the densest. Dielectric constant increased with increasing temperature up to $400^{\circ}C$ at 100 kHz and dramatically decreased at the higher temperature. A aspect of dissipation factor was the exact opposite of dielectric constant. BMZN thin films grown at $400^{\circ}C$ exhibited a high dielectric constant of 60.9, a low dissipation factor of 0.007 at 100 kHz.

Studies on the Electrical Properties and Pattern Fabrication of Conjugated Self-Assembled Monolayer by Deep UV Light (원자외선에 의한 공액구조 자기조립 단분자막의 패턴 제작 및 전기적 특성)

  • Oh Se Young;Choi Hyung Seok;Kim Hee Jeong;Park Je Kyun
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2005
  • In general, alkanethiolates having carboxylic acid in the tail group have been used as biorecepton. In this study, we have immobilized a cytochrome c protein using conjugated aromaticthiolates in order to improve the electrical property and physical stability of alkanethilolates. The pattern formation of self-assembled aromaticthiolate monolayers was as follow. Aromatic thiolates bound on the gold surface by the adsorption of 4'-mercapto-biphenyl-4-carboxylic acid and 4-mercapto-[1,1';4',1']terphenyl-4'-carboxylic acid were oxidized by the irradiation of deep UV light through a negative mask. The negative type pattern of the self-assembled monolayer (SAM) was obtained by developing with a deionized water. The pattern formation and electrical conductivity of aromaticthiolate SAMs was investigated by the measurements of STM and AFM. In addition, cytochrome c or ferrocene amide was immobilized onto the patterned substrate. We also studied on the effect of conjugated aromatic thiolates on the electrical activity of cytochrome c or ferrocene amide by cyclic voltammetry.

Structure and Electrical Properties of PbTe Thin Film According To The Substrate Temperature (기판온도에 따른 PbTe 박막의 구조 및 전기적 물성)

  • Lee, Hea-Yeon;Choi, Byung-Chun;Jeong, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.184-188
    • /
    • 1999
  • PbTe thin films of high quality were deposited on HF-treated Si(100) substrates at various substrate temperature by pulsed laser deposition technique. XRD patterns showed that PbTe layers were well-crystallized to a cubic phase with (h00) preferred orientation with the substrate temperature up to $300^{\circ}C$. PbTe films could not form at substrate temperature above $400^{\circ}C$ because of reevaporation of the Pb. According to AFM image, the surface of films was composed of small granular crystals and flat matrix. According to the increase of substrate temperature, the grain size at film surface becomes larger. By Hall-effect measurement, the carrier concentration and Hall mobility of n-type PbTe films grown by $T_{sub}=300^{\circ}C$ were $3.68{\times}10^{18}cm^{-3}$ and $148\;cm^2/Vs$, respectively.

  • PDF

Electrode Properties of Thin Film Battery with LiCoO2 Cathode Deposited by R.F. Magnetron Sputtering at Various Ar Partial Pressures (R.F. 마그네트론 스퍼터링을 이용한 LiCoO2 양극활물질의 Ar 증착분압에 따른 박막전지 전극 특성)

  • Park, H.Y.;Lim, Y.C.;Choi, K.G.;Lee, K.C.;Park, G.B.;Kwon, M.Y.;Cho, S.B.;Nam, S.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • We investigated the electrochemical properties and microstructure on the various argon deposition pressure $(P_{Ar})$ and the low annealing temperature $(400^{\circ}C)$ of $LiCoO_2$ cathodes, which deposited by R.F. magnetron sputtering. The microsuucture and composition of Lico02 thin film was changed as a function of $P_{Ar}$. The capacity and electrochemical properties were improved with Ph of $LiCoO_2$ thin films. The cycling reversibility and stability of thin film batteries were measured by cyclic voltammetry and the constant current charge-discharge. The physical properties of cathode films were analyzed by ICP-AES, XRD, SEM and AFM for composition, crystallization and surface morphology.

Preparation and Current-Voltage Characteristics of Well-Aligned NPD (4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl) Thin Films (분자배열된 4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl 증착박막 제조와 전기적 특성)

  • Oh, Sung;Kang, Do-Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.591-596
    • /
    • 2006
  • Topology and molecular ordering of NPD(4,4'-bis-[N-(1-naphthyl)-N-phenyl-amino]biphenyl) thin films deposited under magnetic field with post-deposition annealing were investigated. NPD was deposited onto ITO glass substrates via thermal evaporation process in vacuum. It is of great importance for highly oriented organic/metal films to have improved device performances such as higher current density and luminance efficiency. AFM (Atomic Force Microscope) and XRD (X-Ray Diffraction) analyses were used to characterize the topology and structure of oriented NPD films. The multi-source meter was used to observe the current-voltage characteristics of the ITO (Indium-Tin Oxide) / NPD (4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl) / Al (Aluminum) device. While NPD thin films deposited under magnetic field were not molecularly well aligned according to the XRD results, the films after post-deposition annealing at $130^{\circ}C$ were well-oriented. AFM images show that NPD thin films deposited under magnetic field had a smoother surface than those deposited without magnetic field. The current-voltage performance of NPD thin films was improved due to the enhanced electron mobility in the well-aligned NPD films.

Effects hydrogen ambients on the characteristics of poly-crystalline 3C-SiC thin films (수소 분위기가 다결정 3C-SiC 박막의 특성에 미치는 영향)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.134-135
    • /
    • 2007
  • Growth of cubic SiC has been carried out on oxided Si substrate using atmospheric pressure chemical vapor deposition (APCVD). Hexamethyldisilane (HMDS) was used as the single precursor and nonflammable mixture of Ar and $H_2$ was used as carrier gas. Epitaxial growth had performed depositions under the various $H_2$ conditions which were adjusted from 0 to 100 seem. The effects of $H_2$ was characterized by surface roughness, thickness uniformity, films quality and elastic modulus. Thickness uniformity and films quality were performed by SEM. Surface roughness and elastic modulus were investigated by AFM and Nano-indentor, respectively. According to the $H_2$ flow rate, Poly 3C-SiC thin film quality was improved not only physical but also mechanical properties.

  • PDF

Optical Properties of Silicon Nanoparticles and $C_{60}$ Thin Films Prepared by Pulsed Laser Ablation (Pulsed Laser Ablation으로 제작한 $C_{60}$ 및 Si 박막의 광학적 특성 분석)

  • Kim, M.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.118-123
    • /
    • 2005
  • We have investigated the fabrication of Si nanoparticles and $C_{60}$ thin films by pulsed laser ablation. By atomic force microscopy(AFM), the laser-deposited $C_{60}$ thin film was verified to have surface far smoother than the surfaces of films produced by the conventional evaporation method. The Si deposited at a He atmosphere of 0.2 Torr was with about $60{\AA}$ height of the Si nanoparticles, suggesting that it was uniformly deposited. We observed visible green emissions spectra in the $Si/C_{60}$ multilayer films after laser annealing. It is considered that this green emissions is occurred from SiC particles, which is produced reaction of Si nanoparticles with $C_{60}$ by laser annealing.

  • PDF

Effect of gas composition on the characteristics of a-C:F thin films for use as low dielectric constant ILD (가스 조성이 저유전상수 a-C:F 층간절연막의 특성에 미치는 영향)

  • 박정원;양성훈;이석형;손세일;오경희;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.368-373
    • /
    • 1998
  • As device dimensions approach submicrometer size in ULSI, the demand for interlayer dielectric materials with very low dielectric constant is increased to solve problems of RC delay caused by increase in parasitic resistance and capacitance in multilevel interconnectins. Fluorinated amorphous carbon in one of the promising materials in ULSI for the interlayer dielectric films with low dielectric constant. However, poor thermal stability and adhesion with Si substrates have inhibited its use. Recently, amorphous hydrogenated carbon (a-C:H) film as a buffer layer between the Si substrate and a-C:F has been introduced because it improves the adhesion with Si substrate. In this study, therfore, a-C:F/a-C:H films were deposited on p-type Si(100) by ECRCVD from $C_2F_6, CH_4$and $H_2$gas source and investigated the effect of forward power and composition on the thickness, chemical bonding state, dielectric constant, surface morphology and roughness of a-C:F films as an interlayer dielectric for ULSI. SEM, FT-IR, XPS, C-V meter and AFM were used for determination of each properties. The dielectric constant in the a-C:F/a-C:H films were found to decrease with increasing fluorine content. However, the dielectric constant increased after furnace annealing in $N_2$atomosphere at $400^{\circ}C$ for 1hour due to decreasing of flurorine content. However, the dielectric constant increased after furnace annealing in $N_2$atmosphere at $400^{\circ}C$ for 1hour due to decreasing of fluorine concentration.

  • PDF