• Title/Summary/Keyword: C rate

Search Result 19,650, Processing Time 0.053 seconds

Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Kim, Jong-Uk;Hyeong, Ki-Seong;Ko, Young-Tak;Lee, Kyeong-Yang
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.739-752
    • /
    • 2006
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

Assessment of 1,4-Dioxane Removal in Polyester Wastewater by Activated Sludge and Its Microbial Property by 16S rDNA (폴리에스테르 중합폐수의 활성슬러지 공정에서의 1,4-다이옥산 제거 및 16S rDNA에 의한 미생물 군집특성 평가)

  • Han, Ji-Sun;So, Myung-Ho;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.393-400
    • /
    • 2008
  • 1,4-Dioxane($C_4H_8O_2$), which is used as a solvent stabilizer, could make harmful effects on ecosystem because of its higher solubility, toxicity and carcinogenic by US EPA. From 2011, its discharge limit to waterbody will be regulated at 5 mg/L by Ministry of Environment Republic of Korea. It was thus to investigate that the currently operating activated sludge in polyester manufacturing processes in Gumi can properly treat it to meet with the regulation standard. For that purpose, the removal rate of 1,4-dioxane and its microbial properties were assessed for a few companies(i.e. K, H and T). Its removal efficiency was the most highly recorded in H as 98% and then 77% for K, which met with the regulation standard. However, concentration of 1,4-dioxane of T was 23 mg/L in the effluent, which is more than the regulation standard. Aside from, microbial degradation test was done for 100 ppm of 1,4-dioxane in BSM (Basal salt medium) inoculated with each of activated sludge. After 7 days, 1,4-dioxane was completely removed in the test bottle inoculated with H sludge, 67% in T and 52% in K, which could confirm that the given activated sludge might have different biodegradability against the amount of 1,4-dioxane. Therefore, microbial diversity in each company was investigated by 16s rDNA cloning methods where a species, e.g. Methylibium petroleiphilum PM1, was the greatest observed from H and in lesser from K, but it was not detected from T. Methylibium petroleiphilum PM1 is known to efficiently degrade ether like methyl tertiary-butyl ether(MTBE). It is concluded that the activated sludge in H can be most effectively adopted for a biodegradation of 1,4-dioxane in the concern of industrial sector.

Effect of Ganoderma lucidum(Wood, Pot cultivated & Wild) Extract on the Physiological Characteristics of Saccharomyces cerevisiae (원목(原木), 병재배(甁栽培) 및 야생(野生) 영지(靈芝)의 추출물이 Saccharomyces cerevisiae의 생리에 미치는 영향)

  • Joo, Hyun-Kyu;Ha, Seung-Soo;Kim, Seong-Jo;Lee, Joong-Keun;Kim, Hyeong-Keun
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.31-39
    • /
    • 1987
  • This study has been investigated the effect of Ganordema lucidum extract on Saccharomyces cerevisiae growth and physiology. Sacch. cerevisiae was inoculated in Hayduck solution medium which were added 0, 0.1, 0.5, 1.0% extracts of G. lucidum and fermented at $30^{\circ}C$ for 5 days respectively. Some results about cell number, alcohol content and carbon dioxide products during fermentation are as follows: $CO_2$ evolution of yeasts by addition of extract of G. lucidum was more increased than control after the fermentation for 120 hours. It was the most abundant by addition of 1.0% extract of pot-culture G. lucidum. The cell number of yeasts during the fermentation w as more increased than control by addition of extract of G. lucidum. It was by addition of extract of pot-culture G. lucidum that the cell number of yeasts was more increased than by each addition of extract of wood-culture G. lucidum and G. lucidum. Dry weight of yeasts was systematically increased in addition of extract of pot 0.5%>pot 1.0%>wild 1.0%>wood 1.0%=wood 0.5%>wild 0.5%>wild 0.1%>pot 0.1%>wood 0.1%>control in order. It was by addition of extract of pot-culture G. lucidum that. the dry weight of yeasts was more increased than by addition of woodculture G. lucidum and wild G. lucidum. Alcohol quantity by addition of extract of G. lucidum was increased more than 3 times after the fermentation for 72 hours compared with control but there was no any difference among them after the fermentation for 120 hours. The rate of sugar-consumption and fermentation of yeast by addition of extract of G. lucidum was highly increased during the early fermentation. As times went, there was no difference among them during the subsequent fermentation.

  • PDF

Production of ${\beta}-sitosterol$ by Cell Suspension Culture of Chrysanthemum coronarium L. (쑥갓세포의 현탁배양에 의한 ${\beta}-sitosterol$ 생산)

  • Kim, Hyun-Chul;Chung, Ha-Young;Lee, So-Youn;Chung, Ho-Yong;Kim, You-Jung;Baek, Nam-In;Kim, Soung-Hoon;Choi, Geun-Won;Kim, Dae-Keun;Kwon, Byoung-Mok;Park, Mi-Hyun;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.425-430
    • /
    • 2005
  • [${\beta}-sitosterol$] is a plant sterol that reduces cholesterol levels and inhibits the growth of human prostate and colon cancer cells. Optimal conditions for ${\beta}-sitosterol$ production were examined from cell suspension cultures of Chrysanthemum coronarium L. The callus induction was optimal in MS medium containing 1 mg/l NAA and 1 mg/l BAP. Cell suspension culture was also established from the callus. Optimal ${\beta}-sitosterol$ production was obtained when the cells were cultured at an initial density of 2 mg DCW/l in MS medium containing 1 X sucrose (30 mg/l), 1 X nitrogen (1900 mg/l $KNO_3$, 1650 mg/l $NH_4NO_3$), and 1 X phosphate source (170 mg/l). In cell suspension cultures of C. coronarium L. using shake flasks, the peak content of ${\beta}-sitosterol$ was $150{\mu}g/g$ DCW. In cell suspension cultures of C. coronarium L. using an air-lift bioreactor, the maximum ${\beta}-sitosterol$ content of $143.8{\mu}g/g$ DCW was obtained at an air-flow rate of 100 cc/min.

Effect of Amino Acids Supplemented to Culture Medium on Development of Porcine Embryos Culturde in Vitro (아미노산의 첨가가 돼지 체외수정란의 후기배의 발달에 미치는 영향)

  • Kim Y. S.;Song S. H.;Cho S. K.;Kwack D. O.;Kim C. W.;Park C. S.;Chung K. H.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.201-205
    • /
    • 2005
  • The objective of this study was to investigative the effects of amino acids supplementation on maturation, fertilization and embryo development of pig oocytes. Essential amino acids (EA), non-essential amino acids (NA) or both amino acids (EA + NA) were supple-mented to North Carolina State University (NCSU) 23 medium containing porcine follicular fluid (pFF). When the amino acids were supplemented to the maturation medium, the maturation rates were higher (p<0.05) in the NA group than control ($83.3{\pm}0.04\%\;versus\;70.0{\pm}0.05\%$, but the subsequent cleavage rates and development to morula and blstocyst stage between aminoacid supplement groups and control were not different. The developmental rates to morula and blastocysts stage were not significantly different regardless of amino acid supplementation to culture medium. In addition, supplementation of amino acids did not significantly affect the rate of fertilization and polyspermy. When the amino acids were supplement to culture medium, the number of trophectodermal (TE) cells was significantly (p<0.05) higher in amino acid supplement group than that of control ($18.6{\pm}0.5\;versus\;16.1{\pm}0.6$), whereas the numbers of inner cell mass (ICM) cells were not different among the treaonent groups and control ($29.0{\pm}0.9\~31.5{\pm}1.2$). Total cell number was also significantly (p<0.05) higher in EANA group ($50.0{\pm}1.0$) than that of control group ($44.2{\pm}1.1$). These results indicate that the amino acid supplementation to maturation and culture medium may not significantly stimulate early embryo development, but may improve the TE cell number of blastocyst stage in the pig.

Effect of Blue Color-deficient Sunlight on the Productivity and Cold Tolerance of Crop Plants (청색파장(靑色波長)영역이 결여된 태양광이 작물(作物)의 생산성(生産性) 및 내냉성(耐冷性)의 향상에 미치는 효과 Ⅰ. 광합성(光合成) 및 호흡(呼吸)의 전자전달계 활성(活性)의 변화)

  • Jung, Jin;Kim, Jong-Bum;Min, Bong-Ki
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.141-148
    • /
    • 1986
  • The blue-light effect on the grown as well as on the physiological activity of some major horticultural plants in Korea has been investigated. The light quality used for the work was obtained from sunlight filtered by an orangecolored polyethylene film which removed about 70% of visible light in the spectral region of $350㎚{\sim}500㎚$. The film was developed in this laboratory especially for the work and named BCR film meaning blue color-removing film. The light environment in the plastic house which was built with BCR film provided plants with the blue color-deficient sunlight. Thus, the photobiological effect of blue light could be examined conversely by comparing with the effect of white sunlight in a conventional plastic house built with colorless polyethylene film. In a sense of applicability to horticulture, two remarkable effects of the blue color-deficient sunlight on plant physiology were observed: First, it enhanced to a great extent the growth activity of plants-pepper, cucumber, zucchini, tomato, and leaf lettuce at the vegetative stage as well as at the reproductive stage, as demonstrated by their yield which were in average $40{\sim}50%$ increased compared with the control (under white sunlight). Second, it improved significantly the cold tolerance of plants, as exhibited with their resistance to chilling during treatment in a cold chamber maintained at a temperature which caused chilling injury to the plants of control. The visualized effects were reflected on the physiological activity of cells on organelle level. Chloroplast isolated from the plant leaves grown under BCR film showed considerably stronger photosynthetic activity, as judged by the increased electron transport rate of illuminated chloroplast, than that from leaves grown under white PE film. Mitochondria from leaves grown under BCR film maintained normal respiration activity until temperature decreased to a few degree($^{\circ}C$) lower than the temperature which caused respiratory inhibition to mitochondria obtained from leaves of the control.

  • PDF

Isolation of Synthetic Detergent Decomposing Microorganisms in Wastewater and Synthetic Detergent Decomposition Characterization of the Microorganisms (폐하수중 합성세제분해균의 분리(分離) 및 합성세제 (ABS) 분해특성(分解特性))

  • Lee, Hong-Jae;Heo, Jong-Soo;Cho, Ju-Sik;Han, Mun-Gyu;Choi, Jeong-Ho;Lee, Chun-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.144-152
    • /
    • 1993
  • A bacterium which degrades efficiently synthetic detergents was isolated from the polluted waters, activated sludge of wastewater treatment plants or polluted soil. This bacterium showed considerably higher growth rate in the agar plate containing $2,000{\mu}g/ml$ of synthetic detergents than any other isolated strains, was identified as a Pseudomonas fluorescens or strains similar to it. The strain was named as a Pseudomonas fluorescens S1. Optimum pH and temperature for the growth of the Pseudomonas fluorescens S1 were pH 7.0 and $30^{\circ}C$, respectively. The strain was resistant to streptomycin and gentamycin, but sensitive to kanamycin. The strain was greatly resistant to zinc chloride, lead nitrate and copper sulfate, but unable to grow in the presence of relatively low concentrations of mercury chloride and silver nitrate. This strain utilized benzene, catechol, cyclohexane and xylene as a sole carbon source. The strain was well grown in the medium containing ABS 10,000${\mu}g$/ml. Degradation of ABS was 55% and 60% at 20${\mu}g$/ml and 100${\mu}g$/ml of ABS, respectively. Benzene ring was degraded 45% in 100${\mu}g$/ml of ABS. During the incubation of the strain in the medium containing ABS 100${\mu}g$/ml and COD 10,000${\mu}g$/ml for 4 days, degradation of ABS and COD were reduced to 40${\mu}g$/ml and 3,200${\mu}g$/ml, respectively. Total amino acid content of the Pseudomonas fluorescens S1 grown with 1,000${\mu}g$/ml of ABS was 115mg/g cell, whereas its content was decreased in the bacterium grown without synthetic detergent by 9.4%.

  • PDF

Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED) 1. Effects of irradiance and wavelength on the growth of benthic diatom, Nitzschia sp. (발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선 1. 저서규조류 Nitzschia sp. 성장에 영향을 미치는 광량과 파장)

  • Oh, Seok-Jin;Park, Dal-Soo;Yang, Han-Soeb;Yoon, Yang-Ho;Honjo, Tsuneo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • In order for bioremediate the benthic layer in polluted inner Bay, the effects of irradiance and wave-length irradiated from light emission diode (LED) on the growth of benthic diatom Nitzschia sp. (Hakozaki Bay strain of Japan) were investigated. The Nitzschia sp. was cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). At $25^{\circ}C$ and 30 psu, the growth of Nitzschia sp. showed its peak at $20\;{\mu}mol\;m^{-2}\;s^{-1}$ (blue LED) and $40\;{\mu}mol\;m^{-2}\;s^{-1}$ (fluorescent lamp), and was inhibited at the irradiance higher than that irradiance. Nitzschia sp. in yellow LED and red LED is fitted by a rectangular hyperbolic curve because no photoinhibition was observed under maximum irradiance used in this study. The irradiance-growth curves were described as ${\mu}=-0.46{\exp}(1-I/6.32)+0.46-0.00043I,\;(r^2=0.98)$ under blue LED, ${\mu}=0.42(I+7.87)/(I+58.9),\;(r^2=0.99)$ under yellow LED, ${\mu}=0.39(I+3.39)/(I+21.6),\;(r^2=0.94)$ under red LED, ${\mu}=-0.38{\exp}(1-I/7.23)+0.38-0.00016I,\;(r^2=0.96)$ under fluorescent lamp. Maximum specific growth rate of blue LED, yellow LED, red LED and fluorescent lamp was $0.44\;day^{-1},\;0.42\;day^{-1},\;0.39\;day^{-1}$ and $0.37\;day^{-1}$, respectively. The absorption coefficient ($a_{ph}$) of Nitzschia sp. was similar under all the wavelengths (400 nm-700 nm), although maximum $a_{ph}$ was $0.0224\;m^2\;mg\;chi.\;{\alpha}^{-1}$ in 472 nm and $0.0179\;m^2\;mg\;chi.\;{\alpha}^{-1}$) in 663 nm. The results may indicate the possibility of environmental improvement around the benthic layer in polluted coastal area because microphytobenthos growth is stimulated by means of irradiated blue LED at the benthic boundary layer during both autumn and winter, and yellow LED, which might have been suppressed growth of harmful algae, at the layer during both spring and summer.

  • PDF

A Study on the Sanitation Condition for Products of Powdered Raw Grains and Vegetables (곡류 가공품 등의 위생실태에 관한 조사 연구)

  • Cho, Bae-Sick;Gang, Gyung-Lee;Lee, Hyang-Hee;Ha, Dong-Ryong;Kee, Hye-Young;Seo, Kye-Won;Kim, Eun-Sun;Park, Jong-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • Recently, the demand for the powdered products to process raw grains and vegetables has been expanded, and the growth possibility of their fields(markets) in the future will be highly valued with the westernization of living environment and the change of the dietary life. We have bought and analyzed the 111 products of raw grains and vegetables from the large-sized marts, markets and internet orders from March to October 2006. The rate of moisture content was $1.7{\sim}12.5%$. We also found out that the foods over 10% moisture content was 8 of those samples we bought or collected. Their ash rates were averagely $0.3{\sim}8.6%$. The number of those foods that the alien substances were detected was 2. The tar pigments, artificial sweeteners and sulfur dioxides of components that contained food additives were not detected. Each detection range of Cadmium, Lead and Arsenic of the injurious heavy metals was non-detectable $(nd){\sim}0.55,\;nd{\sim}4.52,\;nd{\sim}0.10mg/kg$, while the average detection content were 0.08, 0.48, 0.01 mg/kg. By investigating the contamination degree of the microflora, we discovered that the number of the aerobic plate count, B. cereus over 1,000 cfu/g and C. perfringens over 100 cfu/g was 36 (32.4%), 9 (8.1%) and zero, and that the whole sanitation condition of the products of powdered raw grains and vegetables circulated in the market was not so good.

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF