• Title/Summary/Keyword: C center

Search Result 17,494, Processing Time 0.056 seconds

A Case of Short-chain Acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening

  • Park, Kyungwon;Ko, Jung Min;Jung, Goun;Lee, Hee Chul;Yoon, So Young;Ko, Sun Young;Lee, Yeon Kyung;Shin, Son Moon;Park, Sung Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.1
    • /
    • pp.40-43
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive mitochondrial disorder of fatty acid oxidation associated with mutations in the ACADS gene. While patients diagnosed clinically have a variable clinical presentation, patients diagnosed by newborn screening are largely asymptomatic. We describe here the case of a 1-year-old male patient who was detected by newborn screening and diagnosed as SCAD deficiency. Spectrometric screening for inborn errors of metabolism at 72hrs after birth showed elevated butyrylcarnitine (C4) level of 1.69 mol/L (normal, <0.83 mol/L), C4/C2 ration of 0.26 (normal, <0.09), C5DC+C60H level of 39 mol/L (normal, <0.28 mol/L), and C5DC/C8 ration of 7.36 (normal, <4.45). The follow-up testing at 18 days of age were performed: liquid chromatography tandem mass spectrometry (LC-MS/MS), urine organic acids, and quantitative acylcarnitine profile. C4 carnitine was elevated as 0.91; urine organic acid analysis showed elevated ethylmalonic acid as 62.87 nmol/molCr (normal, <6.5), methylsuccinate 6.81 nmol/molCr (normal, not detected). Sequence analysis of ACADS revealed a homozygous missense mutation, c.164C>T (p.Pro55Leu). He is growing well and no episodes of seizures or growth retardation had occurred.

Analysis of Growth Characteristics and Major Components of Angelica gigas Root under Flower Colors (참당귀 꽃 색에 따른 생육특성 및 뿌리의 주성분 함량 분석)

  • Jeong, Dae Hui;Yun, Yeong Bae;Huh, Jeong Hoon;Park, Hong Woo;Um, Yurry;Jung, Chung Ryul;Park, Eung Jun
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.445-454
    • /
    • 2022
  • The aim of this study was to provide basic data for breeding new varieties of Angelica gigas Nakai by identifying the growth characteristics and useful components of its below- and above-ground parts. The basic varieties expressing dark purple (N79-A), light blue-pink (62-C), and white (NN115-C) flowers were identified and collected in the cultivation area, and their seeds were cultured for use as experimental materials. Qualitative growth characteristics of the above-ground parts were then examined. Purple coloration was evident throughout the entire plant body in the N79-A group, whereas the 62-C and NN115-C groups displayed yellow-green coloration. In terms of quantitative growth characteristics, the 62-C group displayed significantly lower above- and below-ground growth than the other two groups. Levels of nodakenin and decursinol-angelate were high in the NN115-C group (0.88 ± 0.13%) and N79-A group (2.56 ± 0.12%). However, the overall results were not statistically significant. The results could provide a foundation for breeding new varieties of Angelica gigas Nakai, which are used predominantly for medicinal purposes and have low bolting and high yield potential.

Strain-dependent Differences of Locomotor Activity and Hippocampus-dependent Learning and Memory in Mice

  • Kim, Joong-Sun;Yang, Mi-Young;Son, Yeong-Hoon;Kim, Sung-Ho;Kim, Jong-Choon;Kim, Seung-Joon;Lee, Yong-Duk;Shin, Tae-Kyun;Moon, Chang-Jong
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.183-188
    • /
    • 2008
  • The behavioral phenotypes of out-bred ICR mice were compared with those of in-bred C57BL/6 and BALB/c mice. In particular, this study examined the locomotor activity and two forms of hippocampus-dependent learning paradigms, passive avoidance and object recognition memory. The basal open-field activity of the ICR strain was greater than that of the C57BL/6 and BALB/c strains. In the passive avoidance task, all the mice showed a significant increase in the cross-over latency when tested 24 hours after training. The strength of memory retention in the ICR mice was relatively weak and measurable, as indicated by the shorter cross-over latency than the C57BL/6 and BALB/c mice. In the object recognition memory test, all strains had a significant preference for the novel object during testing. The index for the preference of a novel object was lower for the ICR and BALB/c mice. Nevertheless, the variance and the standard deviation in these strains were comparable. Overall, these results confirm the strain differences on locomotor activity and hippocampus-dependent learning and memory in mice.

C-kit Protein Expression and Mutation Analysis in Adenoid Cystic Carcinomas (샘낭암종에서의 C-kit 단백 발현 및 돌연변이 분석)

  • Cho Kyung-Ja;Choi Jene;Kim Sang-Yoon;Nam Soon-Yuhl;Choi Seung-Ho;Kim Sung-Bae
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.2
    • /
    • pp.158-163
    • /
    • 2003
  • Objectives: To document the incidence and pattern of c-kit protein expression & mutation in adenoid cystic carcinomas. Materials and Methods: Twenty-five cases of adenoid cystic carcinomas of the major and minor salivary glands and the upper and lower respiratory tract were subjected to the immunohistochemical study for ckit(CD117 ; Dako). Nineteen cases of them were analyzed for mutations in exon 11 and exon 17 by PCR-SSCP, and in cases of need, by DNA sequencing. Results: Twenty-three cases (92%) showed c-kit expression, but none showed mutations in exon 11 and exon 17. The expression was restricted to the inner luminal cells in all tubular types and most of cribriform adenoid cystic carcinomas, while the staining was diffuse in all solid variants and two cribriform types. Conclusion: C-kit expression was common in adenoid cystic carcinomas, regardless of their origins. Although genetic bases await further studies, a clinical trial of tyrosine kinase inhibitors in adenoid cystic carcinomas, especially in solid variants, is considered encouraging.

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation (소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상)

  • Kim, Gwanghun;Jeon, Junhyub;Seo, Namhyuk;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.