• Title/Summary/Keyword: Byproduct ash

Search Result 49, Processing Time 0.024 seconds

Evaluation of Anti-Stripping Performance in Asphalt Concrete using Byproduct Ash produced from Circulating Fluidized Bed Boiler (보일러 부산 애쉬를 이용한 아스팔트 콘크리트의 박리저항성 평가)

  • Kim, Yooseok;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.319-325
    • /
    • 2018
  • Pot-holes are steadily increasing due to abnormal climate such as heavy rainfall and frequent snowfall. Pot-hole related to traffic accidents cause injuries, car damage and distress of road facilities. To reduce pot-holes, the use of an anti-stripping agent is mandatorily recommended to asphalt concrete mixture. Hydrated lime is commonly used as anti-stripping agent due to the convenience and economics. Byproduct ash from circulating fluidized bed boiler was reviewed as an anti stripping agent. According to the test results, the byproduct ash is satisfied with TSR specification using 1% to 3% by weight of the asphalt mixture. The byproduct ash was examined under various condition changes of aggregate and asphalt concrete mixture considering quality movement. According to the results, using the byproduct ash was measured average 0.87 of TSR and coverage rates of 60% after rolling bottle test. Test results also revealed that the byproduct ash showed stable performance. Using the byproduct ash to decrease pot-hole in asphalt concrete pavement is suitable for demonstrating stable performance as anti-stripping agent.

Development of manufacturing technology of Wave Dissipating Block with industrial byproduct (산업부산물을 활용한 소파블럭 제조기술 개발)

  • Han Sang-Mook;Cho Myoung-Suk;Song Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.129-132
    • /
    • 2005
  • Reclamation coal ash, which is generated as a byproduct at a coal thermal power plant is not recycled but dumped into an ash landfill disposal site. Furthermore, various byproducts and wastes have been proposed for use from the point of reduction in the environmental load. Authors have started research to develope manufacturing technology of concrete mixture design method with large amount of land reclamation coal ash. In this study an optimum mix proportion design for utilizing the reclamation coal ash and containing copper slags as an aggregate for secondary concrete products such as a wave dissipating blocks was successfully developed.

  • PDF

Development of manufacturing technology of Artificial Reef Mixed with Reclamation Coal Ash (매립석탄회를 활용한 인공어초 제조기술 개발)

  • Han Sang-Mook;Cho Myoung-Suk;Song Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.125-128
    • /
    • 2005
  • Coal ash, which is generated as a byproduct at a coal thermal power plant, can be classified into fly ash and bottom ash. Most of fly ash is recycled as an admixture for concrete, while bottom ash is not recycled but dumped into an ash landfill disposal site. So, if a technology for recycling bottom ash efficiently, which is increasingly generated year by year, is not developed, environmental problems will take place as a matter course and further an enormous economical cost will be required for construction of additional ash landfill disposal sites. In this study an optimum mix proportion design and a quality control method for utilizing the reclamation coal ash as an aggregate for secondary concrete products such as an artificial reef was successfully developed.

  • PDF

Feeding Effect of Dried Citrus Byproduct on the Quality of Jeju Native Pig Meat (제주도 토종 돼지고기의 품질에 영향을 미치는 건조 감귤 부산물 급여 효과)

  • Yang, Seung-Joo;Jung, In-Chul;Moon, Yoon-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.5
    • /
    • pp.592-599
    • /
    • 2006
  • This study was carried out to investigate the possibility for utilization and the effectiveness of citrus byproducts on the nutritional composition and sensory score of Jejudo native pig meat. The groups are consisting of the Jejudo native pig loin without citrus byproduct ($JNP-T_0$) and the Jejudo native pig loin fed with 8% and 15% citrus byproduct during growing and fattening period($JNP-T_1$). The contents of moisture, crude protein, crude fat, crude ash, calorie, cholesterol content Mg, P, K, Na, vitamin $B_1\;and\;B_2$, total amino acid, and total free amino acid content were not significantly different between $JNP-T_0$ and $JNP-T_1$(p>0.05). It was found that palmitic acid($25.301{\sim}27.403%$) was the highest one among saturated fatty acid while oleic acid($42.234{\sim}43.061%$) was the highest among unsaturated fatty acid in both groups. In case of sensory score, the color and aroma of raw meat, and the flavor preference of boiled meat of $JNP-T_0$ were higher than those of $JNP-T_1$(p<0.05). But the taste, texture, juiciness and palatability of boiled meat were not influenced by feeding of citrus byproduct.

  • PDF

Influence of Fly Ash Quality on Rheological Properties of Cement Paste (플라이애시 품질이 시멘트 페이스트 레올로지 특성에 미치는 영향)

  • Baek, Byung-Hoon;Han, Dongyeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.183-189
    • /
    • 2017
  • The aim of the research is to provide rheological properties of cement paste with various qualities of coal ash including fly ash, raw ash, and reject ash. Generally, fly ash is the well known supplementrary cementitious materials for concrete and is used to improve various properties. Although fly ash is obtained as a byproduct of fire powder plant, still reject ash is wasted from raw ash. In this research, thus, to provide a fundamental information on using not only fly ash but also raw ash or reject ash for cementitious materials, a rheological properties of cement paste was studied with three different coal ash. This research was conducted from particle conditions of three different coal ashes to rheological properties in cement paste phase. According to the expeirment, reject ash was consisted with large and coagulated particles although fly ash was consisted with a small and spherical shaped particles. based on the particle conditions of various coal ashes, rheological behaviors were tested, and it was shown as the coal ashes improved the fluidity of cement paste. Specifically, depending on the particle distributions of cement paste, it is considered that the viscosity of paste can be controlled.

Determination and prediction of digestible and metabolizable energy concentrations in byproduct feed ingredients fed to growing pigs

  • Son, Ah Reum;Park, Chan Sol;Kim, Beob Gyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.546-553
    • /
    • 2017
  • Objective: An experiment was conducted to determine digestible energy (DE) and metabolizable energy (ME) of different byproduct feed ingredients fed to growing pigs, and to generate prediction equations for the DE and ME in feed ingredients. Methods: Twelve barrows with an initial mean body weight of 31.8 kg were individually housed in metabolism crates that were equipped with a feeder and a nipple drinker. A $12{\times}10$ incomplete Latin square design was employed with 12 dietary treatments, 10 periods, and 12 animals. A basal diet was prepared to mainly contain the corn and soybean meal (SBM). Eleven additional diets were formulated to contain 30% of each test ingredient. All diets contained the same proportion of corn:SBM ratio at 4.14:1. The difference procedure was used to calculate the DE and ME in experimental ingredients. The in vitro dry matter disappearance for each test ingredient was determined. Results: The DE and ME values in the SBM sources were greater (p<0.05) than those in other ingredients except high-protein distillers dried grains. However, DE and ME values in tapioca distillers dried grains (TDDG) were the lowest (p<0.05). The most suitable regression equations for the DE and ME concentrations (kcal/kg on the dry matter [DM] basis) in the test ingredients were: $DE=5,528-(156{\times}ash)-(32.4{\times}neutral\;detergent\;fiber\;[NDF])$ with root mean square error = 232, $R^2=0.958$, and p<0.001; $ME=5,243-(153 ash)-(30.7{\times}NDF)$ with root mean square error = 277, $R^2=0.936$, and p<0.001. All independent variables are in % on the DM basis. Conclusion: The energy concentrations were greater in the SBM sources and were the least in the TDDG. The ash and NDF concentrations can be used to estimate the energy concentrations in the byproducts from oil-extraction and distillation processes.

Characteristic of Alkali-Activated Cement Mortar using Active Slag Binder Manufactured by Industrial Byproduct (산업부산물로 제조된 활성 슬래그 바인더를 활용한 알칼리활성화 시멘트 모르타르의 특성)

  • Hwang, Byoung Il;Kang, Hye Ju;Lee, Hoo Suk;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.240-241
    • /
    • 2018
  • In this paper, we tried to find the proper ratio of industrial byproducts which can express mechanical characteristics similar to ordinary portland cement by varying the ratio of industrial byproducts. as a result, the activated slag binder produced by the industrial byproduct in this study increased in compressive strength as the ratio of blast furnace slag increased and the fly ash ratio decreased.

  • PDF

Trends of Recycling Technologies in Utilization of Coal Combustion Byproducts for Manufacturing Geopolymers through Patent and Literature Analysis (특허와 논문으로 본 석탄 연소부산물의 지오폴리머 원료화 기술 동향)

  • Lee, Sujeong;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • Approximately 8.5 million tons of fly ash and 740,000 tons of briquette ash were produced in 2010. Inefficient recycling of coal ash has been a heavy economic and environmental burden and economical coal ash utilization technologies are required to turn coal ash into valuable resources. In this study the patents and literature were analyzed to understand the present situation of coal ash recycling technologies and to promote utilization of coal ash for producing a non-sintering green cement, geopolymer. The survey was based on the open patents of USA, European Union, Japan and Korea, and the papers in SCI - indexed journals published between 1979 and 2013. Technical key words were used for data collection and noise filtering. Trends of recycling technologies in utilization of coal ash for producing geopolymers were discussed in terms of time periods, countries, companies and various forms of technologies.

Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash (타이어 고무 애쉬 치환에 따른 플라이애쉬 혼입 콘크리트의 내구성능 성능 평가)

  • Kwon, Seung-Jun;Yoon, Yong-Sik;Park, Sang-Min;Kim, Hyeok-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.647-653
    • /
    • 2016
  • In the paper, durability performance in FA (Fly Ash) blended concrete is evaluated considering replacement of FA with TDFA (Tire Derived Fuel Ash) from 3.0% to 12%. TDFA is a byproduct from combustion process in thermal power plant, where chopped rubber is mixed for boiling efficiency. This is the 1st study on application of TDFA to concrete as mineral admixture. For the work, concrete samples containing 0.5 of w/b (water to binder) ratio and 20% replacement ratio of FA are prepared. With replacing FA with TDFA to 12%, durability performance is evaluated regarding compressive strength, carbonation, chloride diffusion, and porosity. The results of compressive strength, carbonation, and porosity tests show reasonable improvement in durability performance to 12% replacement of TDFA. In particular, clear decreasing diffusion coefficient is observed with increasing TDFA replacement due to its packing effect. Concrete containing TDFA can be effective for durability improvement when workability is satisfied in mixing stage.

Utilization of Waste and Industrial Byproducts as a Raw Material in the Manufacture of Portland Cement (시멘트 원료로서 폐.부산자원의 활용)

  • 최상흘;박용완;지정식;오희갑
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.3
    • /
    • pp.149-156
    • /
    • 1978
  • The utilization of waste and industrial byproduct materials, such as blast furnace slag, shales, poor coal and anthracite briquet ash, were investigated as a source of calcareous or argillaceous material in the manufacture of Portland cement. As a slag is similar to cement in chemical compoment and contains about 40∼50% of CaO, it's utilization in cement manufacture should be suitable. The burnability was increased and the heat of clinker formation was decreased by using slag. Some consideration should betaken in the use of large quantity because of sticking in suspension preheater kiln. Suitable quantities of colliery shales and poor coal should be useable in cement manufacture as a argillaceous materials and also its combustible materials should be utilized in cement manufacture. Anthracite briquet ash is also usable as a argillaceous source and it gives good burnability.

  • PDF