• 제목/요약/키워드: Bypass diode

검색결과 35건 처리시간 0.032초

Optimal Design of PV Module with Bypass Diode to Reduce Degradation due to Reverse Excess Current

  • Jung, Tae-Hee;Kang, Gi-Hwan;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.279-283
    • /
    • 2014
  • In this paper, we present an economical and practical standard to install a bypass diode in a thin-film PV module. This method helps to reduce heat generation and to prevent module degradation due to excess current from reverse bias. The experimental results confirm that for different numbers of solar cells, there is a relation between the excess reverse current and the degradation of solar cells in a-Si:H modules. The optimal number of solar cells that can be connected per bypass diode could be obtained through an analysis of the results to effectively suppress the degradation and to reduce the heat generated by the module. This technique could be expanded for use in high power crystalline Si PV modules.

결정질 실리콘 및 CuInxGa(1-x)Se2 모듈의 부분음영에 따른 태양전지 특성 변화 및 바이패스 다이오드의 작동 메커니즘 분석 (Analysis of Mechanism for Photovoltaic Properties and Bypass Diode of Crystalline Silicon and CuInxGa(1-x)Se2 Module in Partial Shading Effect)

  • 이지은;배수현;오원욱;강윤묵;김동환;이해석
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.196-201
    • /
    • 2015
  • This paper presents the impact of partial shading on $CuIn_xGa_{(1-x)}Se_2(CIGS)$ photovoltaic(PV) modules with bypass diodes. When the CIGS PV modules were partially shaded, the modules were under conditions of partial reverse bias. We investigated the characterization of the bypass diode and solar cell properties of the CIGS PV modules when these was partially shaded, comparing the results with those for a crystalline silicon module. In crystalline silicon modules, the bypass diode was operated at a partial shade modules of 1.67 % shading. This protected the crystalline silicon module from hot spot damage. In CIGS thin film modules, on the other hand, the bypass diode was not operated before 20 % shading. This caused damage because of hotspots, which occurred as wormlike defects in the CIGS thin film module. Moreover, the bypass diode adapted to the CIGS thin film module was operated fully at 60% shading, while the CIGS thin film module was not operated under these conditions. It is known that the bypass diode adapted to the CIGS thin film module operated more slowly than that of the crystalline silicon module; this bypass diode also failed to protect the module from damage. This was because of the reverse saturation current of the CIGS thin film, $1.99{\times}10^{-5}A/cm^2$, which was higher than that of crystalline silicon, $8.11{\times}10^{-7}A/cm^2$.

PV모듈의 바이패스 다이오드 단락 고장 시 태양광어레이 회로 특성분석 (Electric Circuit Analysis for PV Array on Short-Circuit Failure of Bypass Diode in PV Module)

  • 이충근;신우균;임종록;황혜미;주영철;정영석;강기환;장효식;고석환
    • 한국태양에너지학회 논문집
    • /
    • 제39권6호
    • /
    • pp.15-25
    • /
    • 2019
  • As the installation of photovoltaic systems increases, fire accidents of PV system grow every year. Most of PV system fires have been reported to be caused by electrical components. The majority of fire accidents occurred in combiner box, which is presumed to be short-circuit accidents due to dustproof and waterproof failures or heat deterioration of blocking diode. For this reason, the blocking diode installation became optional by revised PV combiner regulation. In this paper, according to the revised regulation, reverse current that generated by voltage mismatch was measured and analyzed in PV array without a blocking diode. The factors that cause voltage mismatch in array are assumed to be shaded PV module and short circuit failure of bypass diode. As the result of experiment, there is no reverse current to flow under shading condition in module, but reverse current flows on the failure of bypass diode in module. According to the module's I-V characteristic curve analysis, open voltage was slightly reduced due to operation of bypass diode in shading. However, it showed that open circuit voltage has decreased significantly in the failure of bypass diode. This indicates that the difference in open voltage reduction of voltage mismatch factor causes reverse current to flow.

Low-Power Cool Bypass Switch for Hot Spot Prevention in Photovoltaic Panels

  • Pennisi, Salvatore;Pulvirenti, Francesco;Scala, Amedeo La
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.880-886
    • /
    • 2011
  • With the introduction of high-current 8-inch solar cells, conventional Schottky bypass diodes, usually adopted in photovoltaic (PV) panels to prevent the hot spot phenomenon, are becoming ineffective as they cause relatively high voltage drops with associated undue power consumption. In this paper, we present the architecture of an active circuit that reduces the aforementioned power dissipation by profitably replacing the bypass diode through a power MOS switch with its embedded driving circuitry. Experimental prototypes were fabricated and tested, showing that the proposed solution allows a reduction of the power dissipation by more than 70% compared to conventional Schottky diodes. The whole circuit does not require a dedicated DC power and is fully compatible with standard CMOS technologies. This enables its integration, even directly on the panel, thereby opening new scenarios for next generation PV systems.

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

PV 모듈의 바이패스 다이오드 배치와 그림자 영향에 따른 I-V특성에 관한 연구 (The Analysis on I-V Characteristics of PV module depending on Bypass Diode and Sun Shading Effects)

  • 김승태;강기환;박지홍;김경수;안형근;한득영;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.222-223
    • /
    • 2007
  • Though there are many causes for the maximum output power reduction, the short-term problem is hot-spot effect by sun shading. To prevent this, normally PV maker uses bypass diode. In here, we tried to check the how bypass diodes works by varying sun shading portion on solar. In case of absence of bypass, the sun shading effect increases the series resistance and that promotes the reduction of maximum power and degradation of PV modules. Bypass diode worked normally when 60% of solar cell was shaded and the measured maximum output power was lower than that of theoretical one. The further analysis is needed.

  • PDF

Bypass Heat Sink Analysis for a Laser Diode Bar with a Top Canopy

  • Ji, Byeong-Gwan;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.113-117
    • /
    • 2017
  • With the increasing use of high-power laser diode bars (LDBs) and stacked LDBs, the issue of thermal control has become critical, as temperature is related to device efficiency and lifetime, as well as to beam quality. To improve the thermal resistance of an LDB set, we propose and analyze a bypass heat sink with a top canopy structure for an LDB set, instead of adopting a thick submount. The thermal bypassing in the top-canopy structure is efficient, as it avoids the cross-sectional thermal saturation that may exist in a thick submount. The efficient thickness range of the submount in a typical LDB set is guided by the thermal resistance as a function of thickness, and the simulated bypassing efficiency of a canopy is higher than a simple analytical prediction, especially for thinner canopies.

승압 초퍼 기능이 내장된 새로운 태양광 발전용 파워컨디셔너의 개발 (Development of Boost Chopper with Built New Renewable Energy in Grid-Connected Distributed Power System)

  • 문상필;이수행;김영문
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.361-367
    • /
    • 2014
  • This paper is related to a new solar power conditioner for a built-in step-up chopper function. In the first step-up chopper proposed solar PV power conditioner for mutually connected in series with the input voltage of the bypass diodes are respectively connected to the positive terminal should install the mutual boosting chopper diode connected in series with the boost chopper switching element between the two power supply and at the same time the first and the second was connected to a second diode and a resonance inductor and a snubber capacitor in series with each other. And the common connection point between the bypass diode and the step-up chopper and the step-up chopper diode common connection point of the switching elements of the input voltage was set to the boost inductor for storing energy. In addition, between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point of the first auxiliary diode and the second common connection point of the auxiliary diode was provided, the resonance capacitor. Between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point and the common connection point of the resonance inductor snubber capacitor and connecting the third secondary diode, between two power supply lines is characterized by configuring the DC link capacitor bus lines in parallel. Therefore, it is possible to suppress the switching loss through, DC link bus lines, as well as there could seek miniaturization and weight reduction of the power conditioner itself by using a common capacitor of the non-polar non-polar electrolytic capacitor having a capacitor, the service life of the circuit can be extended and it is possible to greatly reduce the loss can be greatly improve the reliability of the product and the operation of the product itself.

열 우회 구조를 적용한 GaN 레이저 다이오드 패키지의 열특성 분석 (Thermal Characteristics of a Heat Sink with Bypass Structure for GaN-based Laser Diode)

  • 지병관;이승걸;박세근;오범환
    • 한국광학회지
    • /
    • 제27권6호
    • /
    • pp.218-222
    • /
    • 2016
  • 레이저 다이오드 TO 패키지 내부의 주요 부분과 히트싱크 구조의 열전달 특성을 전산모사를 통해 분석하고, 개선구조의 효율적 적용방안을 제안하였다. 열 병목 현상을 개선하기 위해, 레이저 다이오드 상부에 열 우회를 도모할 수 있는 방열구조물을 설치하는 것을 제안하였고, 열저항 단순모델 기대치와 비교하여 그 우회 효율 개선 정도를 더욱 향상시키는 적용 범위를 파악하였다. 열 병목을 감안하여 방열 도움 구조물을 적절히 추가함에 따라, 통상적인 기대 수준보다 더욱 향상된 열 우회 효율을 얻을 수 있었음을 보고한다.

Power Conditioning Inverter Controlled by Sinewave Tracking Boost Chopper without DC Smoothing Capacitor Stage

  • Ahmed, Nabil A.;Miyatake, Masafumi;Kang, Tae-Kyung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.179-185
    • /
    • 2005
  • This paper presents a novel circuit topology of a high efficiency single-phase power conditioner. This power conditioner is composed of time-sharing sinewave absolute pulse width modulated boost chopper with a bypass diode in the first power processing stage and time-sharing sinewave pulse width modulated full-bridge inverter in the second power processing stage operated by time-sharing dual mode pulse pattern control scheme. The unique operating principle of the two power processing stage with time-sharing dual mode sinewave modulation scheme is described with a design example. This paper proposes also a sinewave tracking voltage controlled soft switching PWM boost chopper with a passive auxiliary edge-resonant snubber. The new conceptual operating principle of this novel power conditioner related to new energy utilization system is presented and discussed through the experimental results.

  • PDF