Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.5.279

Optimal Design of PV Module with Bypass Diode to Reduce Degradation due to Reverse Excess Current  

Jung, Tae-Hee (Photovoltaic Laboratory, Korea Institute of Energy Research(KIER))
Kang, Gi-Hwan (Photovoltaic Laboratory, Korea Institute of Energy Research(KIER))
Ahn, Hyung-Keun (Department of Electrical Engineering, Konkuk University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.5, 2014 , pp. 279-283 More about this Journal
Abstract
In this paper, we present an economical and practical standard to install a bypass diode in a thin-film PV module. This method helps to reduce heat generation and to prevent module degradation due to excess current from reverse bias. The experimental results confirm that for different numbers of solar cells, there is a relation between the excess reverse current and the degradation of solar cells in a-Si:H modules. The optimal number of solar cells that can be connected per bypass diode could be obtained through an analysis of the results to effectively suppress the degradation and to reduce the heat generated by the module. This technique could be expanded for use in high power crystalline Si PV modules.
Keywords
Hot spot; Bypass diode; Degradation behavior; Thin-film module; Reverse excess current;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Wendlandt, A. Drobisch, T. Buseth, S. Krauter, and P. Grunow, Proc. 25th European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC) (Valencia, Spain, 2010), p. 4002.
2 J. Munoz, E. Lorenzo, F. Martinez-Moreno, L. Marroyo, and M. Garcia, Proc. in Photovoltaics: Research and Applications, Sci., 16, 693 (2008).
3 M. Garcia, L. Marroyo, E. Lorenzo, J. Marcos, and M. Perez, Prog. in Photovoltaics: Research and Applications (2013).
4 W. Herrmann, W. Wiesner, and W. Vaass, Proc. 26th IEEE Photovoltaic Specialists Conference (PVSC) (Anaheim, CA, 1997), p.1129.
5 H. Yoshioka, S. Nishikawa, S. Nakajima, and M. Asai, Proc. 25th IEEE Photovoltaic Specialists Conference (PVSC) (Washington, DC,1996), p.1271.
6 H. Yang, W. Xu, H. Wang, and M. Narayanan, Proc. 35th IEEE Photovoltaic Specialists Conference(PVSC), (Honolulu, HI, 2010), p.2806.
7 J. W. Bishop, Solar Cells Sci., 25, 73 (1998).
8 V. Quaschning and R. Hanitsch, Solar Energy Sci., 56, 513 (1996).   DOI   ScienceOn
9 Q. Zhang and Q. Li, Proc. 38th IEEE Photovoltaic Specialists Conference(PVSC) (Austin, TX, 2012), p.1344.
10 J. Wohlgemuth and W. Herrmann, Proc. 31th IEEE Photovoltaic Specialists Conference(PVSC) (2005), p.1062.
11 W., Herrmann, M., Adrian, W., Wiesner, Proc. the Second World Conference on Photovoltaic Solar Energy Conversion(PVSEC) (Vienna, 1998), p. 2357.
12 S. A. Spanoche, J. D. Stewart, S. L. Hawley, and I. E. Opris, IEEE Journal of Photovoltaics, Sci., 3, p.785, (2013).   DOI   ScienceOn
13 A. Zegaoui, P. Petit, M. Aillerie, J. P. Sawicki, and J. P. Charles, Energy Procedia, Sci., 18, 1247 (2013).
14 H. Yang, H. Wang, and M. Wang, International Journal of Photoenergy, Scie., 2012, 1, (2012).
15 C. Buerhop, D. Schlegel, M. Niess, C. Vodermayer, R. Weissmann, and C. J. Brabec, Solar Energy Material and Solar Cells, Sci., 107, 154 (2012).   DOI   ScienceOn
16 M. C. A. Garcia, W. Herrmann, W. Bohmer, and B. Proisy, Prog. in Photovoltaics: Research and Applications, Sci., 11, 693 (2003).