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With the introduction of high-current 8-inch solar cells, 
conventional Schottky bypass diodes, usually adopted in 
photovoltaic (PV) panels to prevent the hot spot 
phenomenon, are becoming ineffective as they cause 
relatively high voltage drops with associated undue power 
consumption. In this paper, we present the architecture of 
an active circuit that reduces the aforementioned power 
dissipation by profitably replacing the bypass diode 
through a power MOS switch with its embedded driving 
circuitry. Experimental prototypes were fabricated and 
tested, showing that the proposed solution allows a 
reduction of the power dissipation by more than 70% 
compared to conventional Schottky diodes. The whole 
circuit does not require a dedicated DC power and is fully 
compatible with standard CMOS technologies. This 
enables its integration, even directly on the panel, thereby 
opening new scenarios for next generation PV systems. 
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I. Introduction 

A photovoltaic (PV) panel (also referred to as module) is 
realized by interconnecting in series a suitable number of PV 
cells to provide the required output voltage (for instance, 72 
cells in mono or poly-crystalline technology are used to 
provide around 36 V), as illustrated in Fig. 1(a). A PV array is 
then obtained by connecting in series a certain number of 
panels to form a string and strings are then connected in 
parallel to achieve the required output power [1], [2]. Under 
optimal operating conditions, the PV cells are uniformly 
illuminated; hence, all are able to generate the same nominal 
current. However, under actual operating conditions, the cells 
are never exactly identical due to fabrication tolerances. 
Besides, some cells may be partially shaded (due to optical 
obstacles, clouds, dust collection, and so on) or damaged and 
consequently limit the current flow of the other cells connected 
in series and illuminated normally [3]. More precisely, what is 
limited is the current of all those modules connected in the 
same series string of the array. This may drastically reduce the 
power and efficiency of the whole PV system [4], [5]. When a 
PV cell is sufficiently shaded, the current generated by the 
other cells reverses the polarity across the shaded cell. This 
causes an overvoltage which, if higher than the cell breakdown 
voltage, may produce an excessive overheating and in some 
cases a permanent damage, like broken glass or even start a fire. 
This effect is known as a hot spot [6]-[8]. In a conventional PV 
panel, hot spots are avoided by connecting a bypass diode in 
reverse across a certain group of cells [9]-[11]. This solution is 
shown in Fig. 1(b). It is seen that these diodes offer an 
alternative path to the current flow, so the shaded cell does not 
act as a load. Indeed, if a cell is shaded (marked with an “X” in 
the figure), the voltage drop across that cell causes the  
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Fig. 1. PV panel: (a) realized through series connection of PV
cells and (b) where shaded cell is marked with “X”.
Alternative current path offered by bypass diode is
highlighted. 
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Fig. 2. Simplified block diagram of the proposed cool bypass
switch (CBS). 
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associated diode to be forward biased thereby acting as a 
bypass element for the current. The above described solution is 
effective, but it shifts the overheating problem to the bypass 
diodes. 

To minimize power dissipation, Schottky diodes are 
employed as their threshold voltage is around 0.35 V, which is 
much less than a conventional diode. The suitability of these 
diodes, however, has been reduced with the emergence in the 
market of high-efficiency 6-inch PV cells, that are able to 
generate currents as high as 9 A. Such high currents cause the 
forward voltage of each Schottky diode to rise up to 450 mV; 
hence, the associated power dissipation, with results around   
4 W, become unacceptable. 

To limit the power dissipation, one possible solution is to 
replace the bypass diode with a power MOS transistor. Indeed, 
the voltage drop between the MOS drain and source terminals 

can be limited to a few tens of millivolts so that the power 
dissipation can be contained to a few hundreds of milliwatts. 
This approach has been implemented by the Fraunhofer 
Institute [11]. In this original solution, the voltage drop of the 
MOS parasitic drain-source diode is boosted through an 
inductive DC/DC converter circuit to obtain the required 
driving voltage for the gate terminal of the same MOS 
transistor. Unfortunately, this technique cannot be integrated 
into a monolithic circuit because of the presence of the bulky 
inductor. Instead, a solution compatible with standard low-
cost IC technologies would be desirable as it would allow a 
sensible area and cost reduction. The miniaturization coupled 
with the reduction of the power dissipation would also enable 
the integration of the circuit directly on the panel, avoiding 
mounting the diode in a junction box and further reducing 
costs. 

To achieve these targets, we present in this paper a solution 
that overcomes the limitations exhibited by the Fraunhofer 
approach and that is fully compatible with CMOS 
technologies; hence, suitable for integration as a system in a 
package. Since the working temperature of the proposed 
bypass device is lower than for conventional diodes, we refer to 
the proposed solution as the cool bypass switch (CBS). We 
describe the principle of operation and implementation of the 
CBS in section II. Experimental results will be discussed in 
section III, including a comparison with two conventional 
diodes used in this application. Finally, some author 
conclusions will be given in section IV. 

II. Circuit Description 

Starting from the approach proposed in [12], we eliminate 
the need for the inductor in the DC/DC voltage boosting 
converter by exploiting a charge pump to generate the driving 
voltage for the power MOS transistor. Capacitive charge 
pumps are normally easier to integrate than inductive step-up 
converters with standard IC technologies [13], [14]. Besides, 
the turning on and turning off events are controlled by a 
threshold comparator Comp1, whose threshold voltages are 
easily and precisely set (for example, by means of a resistive 
voltage divider) and may be adjusted according to the 
minimum turn on threshold of the power MOS transistor M1.  

A different strategy was originally adopted in [12] where the 
turning on/off events are defined with a timer. From a 
fabrication point of view, relating the turning on/off events to a 
time constant rather than to voltage thresholds (as implemented 
in the proposed architecture) could severely impact the yield 
because of the process spread. In fact, any correlation between 
a constant time defined by diffused resistor/capacitor and the 
turn-on threshold of a power MOS cannot be guaranteed. 
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The block scheme of the proposed circuit is illustrated in Fig. 
2. It is made up of four main sections in which: 

i) The power MOS M1 is the main switching element. In the 
same figure, the parasitic drain-bulk diode of M1, D, is 
also shown. Since the source and bulk terminals of M1 are 
short circuited, this diode is connected between the drain 
and source. D plays a fundamental role in the circuit 
operation.  

ii) The voltage-boosting section includes a charge pump and 
a local oscillator. This pump boosts the voltage drop 
across D to the supply voltage VDD required by the 
following sections. The role of the MOS transistor M2 is to 
protect from high voltage the oscillator circuit normally 
realized with low voltage transistors. For this purpose, M2 
must have a turn-on threshold smaller than that of the 
intrinsic diode of the integrated structure of the MOS 
power transistor M1 (generally, about 300 mV to 400 mV).  

iii) Comparator Comp1 monitors the two VDD threshold 
voltages, and Comp2 monitors the polarity across M1. 
Both comparators are used to generate the switch-on 
signal to M1.   

iv) The Buffer drives the gate terminal of M1.  
During normal PV panel operations, the voltage between the 

drain and source of M1 is positive, M1 is held in the cut-off 
region and the auxiliary driving system is disabled. This 
situation is exemplified in Fig. 3(a).  

If the portion of the panel connected to the power MOS 
transistor is shaded, then the drain-source voltage of M1 inverts 
its sign becoming negative as the current generated by the 
illuminated cells flows from the anode to the cathode of D. As 
soon as M2 turns on, the voltage drop across D can be exploited 
by the charge pump. This situation is exemplified in Fig. 3(b) 
with the voltage values annotated on the left. The current from 
the other cells/panels flows through D.  

After some oscillator cycles, capacitor C is charged to the 
required voltage VDD needed by the buffer to turn on M1 with 
the adequate overdrive to minimize the drain-source resistance, 
Rds,on. This situation is exemplified in Fig. 3(b) with the voltage 
values annotated on the right. In this case, the major part of the 
current flows through M1.  

Of course, the charge on CL must be periodically restored 
due to unavoidable current losses. The whole driving system 
can be designed so that the time needed to charge CL is much 
less (for instance <10%) than the time in which M1 remains in 
its on state. Actually, when the voltage across CL increases to a 
certain threshold value (for instance, it may be set to 5 V), this 
occurrence is detected through the voltage comparator Comp1, 
so that the driving block can turn on M1. Conversely, when the 
voltage across CL decreases to a lower threshold (it may be 
4.5 V), M1 is turned off to restore the charge in the capacitor CL.  

 

Fig. 3. CBS under different operating conditions: (a) panel fully
irradiated and M1 and D both off and (b) two different
cases: i) panel shaded and M1 off (D in forward mode and
charge pump not completely settled) and ii) panel shaded
and M1 on (charge pump has fully turned on M1 so that
D is in forward mode but below his threshold). In these
two last cases, the current coming from the other
irradiated panels flows through either D or M1,
respectively. 
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When the shadow is removed, the comparator Comp2 detects 
the reverse polarity condition switching off M1 (also M2 is 
turned off and the charge pump disabled). The AND gate 
performs the logic product of the signals coming form Comp1 
and Comp2, so that M1 is switched off provided that at least 
one comparator output is 0. 

As can be seen, the proposed architecture is made up of 
conventional subblocks. This represents a remarkable 
advantage because it allows circuit reliability and robustness to 
be preserved. As a result, almost all the building blocks of the 
proposed device have been designed with quite standard 
topologies, and for this reason, they will not be described in this 
paper. Both the oscillator and the charge pump have been 
implemented with low-voltage threshold CMOS transistors 
because these circuits are directly supplied by the voltage 
across the body diode D of M1, which can drop down to  
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Fig. 4. Block scheme of adopted charge pump [15]. Required
number of stages is 13. 
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Fig. 5. Photograph of fabricated CBS prototype. 
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500 mV at high temperature. Furthermore, the charge pump 
has been implemented according to the architecture discussed 
in [15] where, the number of multiplication stage has been set 
to 13. The schematic of the charge pump is illustrated in Fig. 4, 
and it is often referred to as latched charge pump because it 
includes a latch in each stage. Finally, the oscillator is of the 
relaxation type with oscillation frequency of 2.5 MHz. 

III. Experimental Validation 

The proposed CBS was prototyped by assembling three 
devices into one package (TO-220) as illustrated in Fig. 5. The 
devices are i) the control block (charge pump, control section, 
and buffer) expressly designed for this application and 
fabricated using the BCD6S (Bipolar-CMOS-DMOS) 
technology of STMicroelectronics [16], ii) the discrete 
capacitor CL, and iii) the power MOSFET fabricated using the 
5H4C technology of STMicroelectronics [17].  

The CBS was tested according to the TÜV standard [18]. In 
addition, we compared the performance of the proposed circuit 
with two standard Schottky diodes, the first one having a very 
low leakage current in reverse polarity but a relatively high  

 

Fig. 6. Power consumption of two commercially available
Schottky diodes used in photovoltaic applications and
of proposed CBS, versus forward bias current. 
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Fig. 7. Leakage current of the two reference Schottky diodes and 
of the proposed CBS versus reverse voltage, for five 
different temperature values (85°C to 125°C). 
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voltage drop and the second one having a higher leakage 
current and a lower voltage drop. 

Figure 6 depicts the power consumption of the proposed 
circuit and the two above mentioned Schottky diodes versus 
the biasing forward current. 

It can be seen that the power consumption of the Schottky 
diodes is almost three times than that of the proposed circuit in 
the considered current range. In particular, the power 
consumption of the proposed circuit is around 0.8 W at 8 A 
(which is the maximum current provided by standard 6-inch 
cells).  

Figure 7 shows the leakage current of the two reference 
Schottky diodes, assembled in a TO-220 package, and of the 
proposed solution, versus the reverse voltage. Five temperature 
values ranging from 85°C to 125°C with a step of 10ºC were 
considered. As expected, the leakage current increases with 
temperature. However, in the proposed solution, it is always 
lower than 10 μA, for the temperature range considered. 
Compared to the proposed solution, the leakage currents of the 
Schottky diodes is greater by one order of magnitude at least. 
The heat dissipation was measured at the steady state and 
without using dissipation tools. The ambient temperature was  
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Fig. 8. Heat dissipation of two reference Schottky diodes (A and
B) and of proposed CBS (C) for four different forward
currents (5 A through 8 A). Ambient temperature is kept
constant to 25ºC. 
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Fig. 9. Anode-to-cathode CBS voltage response (lower trace)  to
a 5-mA step (upper trace). After current step is applied
(for t >T1), upper voltage levels correspond to M1
switched off and lower voltage level correspond to M1
switched on.  

 
set to 25ºC. 

Figure 8 has been acquired with an infra-red sensitive 
camera and shows the iso-thermal map of the three devices, 
biased in forward mode at the following currents (5 A, 6 A, 7 A, 
and 8 A). The upper bound of 8 A was dictated by the fact that 
the temperature of one of the Schottky diodes nearly reached 
the limit specification of 150ºC. 

To demonstrate the effectiveness of the proposed circuit to 
prevent the hot spot, we first tested experimentally the time-
domain behavior of the CBS when applying a 5-mA current 
step. This condition emulates the actual operating condition in 
which no current flows through the CBS under regular 
shadowing, and then a large current flows through the CBS if 
one or more PV cells are shadowed. 

In Fig. 9, the CBS anode-to-cathode current (upper trace, 
C2) and the anode-to-cathode voltage (lower trace, C4) is  

 

Fig. 10. Junction box equipped with one prototyped CBS and two
conventional Schottky diodes. 

CBS

Schottky 
diode

 
 
plotted. Before time T1, no current is applied; therefore, the 
CBS is turned off. In T1, we apply a 5-mA step. This current 
flows initially through the drain-bulk parasitic diode that is 
hence forward biased with a peak voltage of 730 mV. This 
voltage is used by the charge pump and boosted across the 
capacitor CL. In T3, the boosted voltage equals 5 V and 
detected by the comparator that enables the gate driver of the 
power MOS. During the T2-to-T3 interval, the power 
MOSFET is turned on and the anode-to-cathode voltage 
decreases to about 100 mV. In this interval, the voltage across 
CL decreases due to charge losses and, once a threshold is 
reached, the charge pump is re-activated, during interval T3-
to-T4. Observe that the repetitive charge time interval T4−T3 
≅ 6 ms is lower than the non-repetitive charge time interval, 
T2−T1 ≅ 50 ms. This is because the capacitor is initially 
discharged and subsequently never discharges completely. At 
a steady state, the voltage drop across the CBS is around 60 
mV when the power MOSFET is turned on. It reaches the 
value of 560 mV, which corresponds to the voltage drop of 
the intrinsic body diode, when the power MOSFET is turned 
off. 

Finally, the proposed CBS was connected inside the junction 
box of a commercial PV panel, as illustrated in Fig. 10. The 
panel was made up of 72 cells grouped into three sections and 
was exposed to the sunlight. We preliminarily measured the 
temperature of one PV cell (belonging to the group of cells 
connected in parallel to the CBS) under normal sunlight 
exposure and subsequently under different shading levels. The 
temperature of the cell remained constant and about equal to 
38ºC. The same performance under the same conditions was 
observed in one PV cell belonging to the group connected to 
the Schottky diode. Therefore, the CBS was found to be 
effective in preventing the hot spot effect. 
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IV. Conclusion 

We presented the architecture of an active low-power bypass 
switch for use in photovoltaic panels that is able to profitably 
replace the traditional Schottky diodes. The solution does not 
require a dedicated power supply as it comprises a charge-
pump that boosts the voltage drop across the parasitic drain-
bulk diode of the power MOSFET switch. The proposed 
switch was prototyped by assembling three ICs (power 
MOSFET and control and boosting sections) into one package 
and was experimentally characterized. It was found to be 
effective in preventing the hot spot effects. Compared to two 
conventional Schottky diodes traditionally adopted in such 
applications, the cool bypass switch reduces the power 
consumption by more than 70% allowing the overall 
conversion efficiency of the panel to be increased. Moreover, 
since the working temperature of the bypass device is 
significantly lower, the mean lifetime of the device itself and 
overall reliability of the system are expected to be improved. 

Despite the fact that the prototype was implemented as a 
system on a package, the proposed architecture is fully 
compatible with CMOS technologies and further work is 
aimed to integrate the whole system into a monolithic circuit. 
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